Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DITR0.449 10.629 10.392 10.289 10.851 20.727 10.969 40.600 10.741 20.805 10.519 10.480 30.636 10.014 100.867 10.680 10.849 10.318 30.753 20.982 20.508 120.871 60.934 20.482 10.596 110.551 20.804 40.508 60.729 10.718 20.417 40.886 10.664 30.000 170.500 20.698 10.000 10.913 10.901 30.766 70.113 120.000 70.617 50.168 20.650 10.477 10.826 10.962 10.348 30.300 10.947 10.776 20.160 30.889 10.651 50.720 20.700 10.728 30.317 10.000 30.238 50.664 10.869 40.514 20.998 10.313 30.138 100.815 10.828 10.622 20.421 50.000 10.823 10.817 10.000 40.000 90.000 10.157 20.866 30.991 10.805 10.660 40.571 20.043 120.709 60.642 30.000 30.000 70.000 10.028 100.018 30.134 30.967 20.000 10.150 20.130 20.949 10.855 10.580 10.262 50.314 10.230 50.222 40.498 50.367 10.153 30.869 10.334 20.397 80.000 30.904 10.486 21.000 10.423 40.484 10.632 60.716 10.733 20.862 10.000 10.433 140.710 10.851 20.000 10.034 40.315 30.385 10.000 70.001 90.268 90.066 110.000 80.278 40.000 10.978 10.839 80.000 10.448 40.000 10.579 10.403 120.000 10.647 30.000 10.000 10.411 30.315 60.904 70.420 10.392 20.000 10.091 60.000 10.128 30.564 30.591 30.568 20.079 90.139 91.000 10.714 30.178 10.000 10.606 30.000 20.000 20.148 60.983 10.000 30.000 10.000 10.374 20.000 70.000 30.662 40.000 1
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.852 10.710 20.973 10.572 40.719 30.795 20.477 60.506 20.601 30.000 140.804 50.646 30.804 20.344 20.777 10.984 10.671 10.879 20.936 10.342 50.632 70.449 40.817 30.475 100.723 20.798 10.376 80.832 20.693 10.031 90.564 10.510 130.000 10.893 30.905 10.672 160.314 10.000 70.718 10.153 30.542 20.397 30.726 30.752 80.252 80.226 20.916 20.800 10.047 160.807 30.769 10.709 30.630 30.769 10.217 100.000 30.285 10.598 40.846 100.535 10.956 40.000 70.137 110.784 20.464 70.463 130.230 120.000 10.598 30.662 90.000 40.087 20.000 10.135 30.900 20.780 110.703 20.741 10.571 20.149 90.697 70.646 20.000 30.076 20.000 10.025 110.000 40.106 60.981 10.000 10.043 70.113 40.888 20.248 150.404 40.252 60.314 10.220 70.245 20.466 70.366 20.159 20.000 40.149 80.690 20.000 30.531 50.253 30.285 60.460 10.440 50.813 10.230 30.283 60.159 110.000 10.728 10.666 50.958 10.000 10.021 50.252 80.118 50.000 70.445 30.223 100.285 10.194 30.390 20.000 10.475 40.842 70.000 10.455 30.000 10.250 70.458 80.000 10.865 10.000 10.000 10.635 10.359 50.972 10.087 30.447 10.000 10.000 90.000 10.129 20.532 60.446 80.503 50.071 130.135 120.699 40.717 20.097 20.000 10.665 10.000 20.000 21.000 10.752 60.000 30.000 10.000 10.142 90.200 10.259 11.000 10.000 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.851 20.687 60.971 20.586 20.755 10.752 70.505 20.404 70.575 50.000 140.848 20.616 40.761 30.349 10.738 30.978 30.546 60.860 80.926 30.346 40.654 30.384 70.828 10.523 40.699 30.583 60.387 70.822 30.688 20.118 40.474 30.603 50.000 10.832 80.903 20.753 90.140 100.000 70.650 30.109 50.520 30.457 20.497 100.871 40.281 40.192 50.887 40.748 30.168 20.727 70.733 20.740 10.644 20.714 50.190 130.000 30.256 30.449 100.914 10.514 20.759 150.337 10.172 60.692 70.617 30.636 10.325 70.000 10.641 20.782 20.000 40.065 30.000 10.000 60.842 40.903 20.661 40.662 30.612 10.405 20.731 40.566 40.000 30.000 70.000 10.017 150.301 10.088 70.941 30.000 10.077 40.000 100.717 80.790 20.310 120.026 170.264 40.349 10.220 50.397 120.366 20.115 130.000 40.337 10.463 60.000 30.531 50.218 40.593 20.455 20.469 20.708 30.210 40.592 40.108 160.000 10.728 10.682 30.671 80.000 10.000 110.407 10.136 40.022 30.575 10.436 40.259 30.428 10.048 60.000 10.000 50.879 50.000 10.480 20.000 10.133 90.597 20.000 10.690 20.000 10.000 10.009 160.000 150.921 30.000 90.151 50.000 10.000 90.000 10.109 80.494 110.622 20.394 90.073 120.141 70.798 20.528 80.026 50.000 10.551 50.000 20.000 20.134 70.717 80.000 30.000 10.000 10.188 40.000 70.000 30.791 30.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
ODIN - Sem200permissive0.368 40.562 40.297 40.207 40.800 100.669 130.940 100.575 30.654 90.749 80.487 30.589 10.609 20.001 120.769 120.561 80.752 60.274 50.682 60.926 130.554 40.833 140.921 40.389 20.599 100.591 10.787 80.550 20.657 50.610 40.334 130.803 80.661 40.090 60.408 70.373 150.000 10.912 20.796 170.501 170.169 80.000 70.641 40.196 10.380 170.397 30.641 50.740 90.862 10.213 30.857 60.685 70.216 10.578 160.557 100.685 50.523 80.581 160.312 30.000 30.065 150.000 170.871 30.359 80.988 20.321 20.090 160.704 60.631 20.393 150.246 110.000 10.482 80.565 150.000 40.000 90.000 10.181 10.913 10.468 160.632 80.642 50.259 110.000 170.832 10.663 10.000 30.081 10.000 10.048 20.000 40.376 10.898 70.000 10.157 10.000 100.870 30.000 170.400 50.265 40.242 50.227 60.539 10.370 140.214 130.129 100.000 40.131 100.054 170.000 30.358 90.491 10.462 40.434 30.346 150.454 150.316 20.814 10.828 20.000 10.000 170.220 170.612 110.000 10.000 110.373 20.378 20.000 70.429 40.152 110.077 90.166 40.202 50.000 10.000 50.441 140.000 10.440 60.000 10.000 120.655 10.000 10.626 70.000 10.000 10.228 90.487 10.784 160.000 90.301 30.000 10.426 20.000 10.108 90.460 130.590 40.775 10.088 60.119 150.485 90.791 10.000 120.000 10.256 170.000 20.000 20.000 110.885 30.303 10.000 10.000 10.127 160.000 70.000 30.894 20.000 1
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
BFANet ScanNet200permissive0.360 50.553 70.293 50.193 50.827 40.689 40.970 30.528 130.661 60.753 60.436 80.378 80.469 150.042 70.810 30.654 20.760 40.266 100.659 100.973 40.574 30.849 110.897 50.382 30.546 130.372 90.698 140.491 90.617 100.526 100.436 10.764 140.476 170.101 50.409 60.585 100.000 10.835 60.901 30.810 50.102 140.000 70.688 20.096 60.483 100.264 120.612 90.591 160.358 20.161 60.863 50.707 40.128 40.814 20.669 40.629 100.563 40.651 140.258 50.000 30.194 100.494 90.806 120.394 60.953 50.000 70.233 10.757 40.508 60.556 40.476 40.000 10.573 50.741 60.000 40.000 90.000 10.000 60.000 170.852 50.678 30.616 60.460 50.338 30.710 50.534 50.000 30.025 40.000 10.043 30.000 40.056 120.493 170.000 10.000 100.109 50.785 70.590 60.298 130.282 30.143 130.262 40.053 110.526 40.337 50.215 10.000 40.135 90.510 40.000 30.596 40.043 140.511 30.321 120.459 30.772 20.124 130.060 140.266 60.000 10.574 90.568 90.653 100.000 10.093 10.298 40.239 30.000 70.516 20.129 140.284 20.000 80.431 10.000 10.000 50.848 60.000 10.492 10.000 10.376 30.522 60.000 10.469 170.000 10.000 10.330 60.151 100.875 140.000 90.254 40.000 10.000 90.000 10.088 130.661 10.481 50.255 120.105 10.139 90.666 50.641 50.000 120.000 10.614 20.000 20.000 20.000 110.921 20.000 30.000 10.000 10.497 10.000 70.000 30.000 110.000 1
Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis. CVPR 2025
PonderV2 ScanNet2000.346 60.552 80.270 80.175 90.810 70.682 90.950 50.560 70.641 100.761 30.398 130.357 100.570 80.113 20.804 50.603 60.750 70.283 40.681 70.952 50.548 50.874 40.852 130.290 120.700 20.356 110.792 50.445 120.545 130.436 120.351 120.787 100.611 80.050 80.290 140.519 120.000 10.825 100.888 50.842 30.259 30.100 20.558 70.070 120.497 70.247 140.457 110.889 30.248 90.106 100.817 130.691 60.094 70.729 60.636 60.620 120.503 110.660 130.243 70.000 30.212 70.590 50.860 80.400 50.881 90.000 70.202 20.622 100.408 110.499 80.261 100.000 10.385 100.636 100.000 40.000 90.000 10.000 60.433 160.843 60.660 60.574 120.481 40.336 40.677 90.486 60.000 30.030 30.000 10.034 60.000 40.080 80.869 100.000 10.000 100.000 100.540 100.727 30.232 170.115 110.186 100.193 90.000 140.403 110.326 60.103 140.000 40.290 40.392 90.000 30.346 100.062 100.424 50.375 70.431 60.667 40.115 140.082 120.239 70.000 10.504 120.606 80.584 120.000 10.002 90.186 100.104 100.000 70.394 50.384 60.083 80.000 80.007 90.000 10.000 50.880 40.000 10.377 100.000 10.263 60.565 30.000 10.608 90.000 10.000 10.304 70.009 110.924 20.000 90.000 110.000 10.000 90.000 10.128 30.584 20.475 70.412 80.076 110.269 30.621 60.509 90.010 70.000 10.491 110.063 10.000 20.472 40.880 40.000 30.000 10.000 10.179 50.125 20.000 30.441 100.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
CeCo0.340 70.551 90.247 130.181 60.784 130.661 140.939 130.564 60.624 130.721 120.484 50.429 50.575 50.027 80.774 110.503 140.753 50.242 130.656 110.945 90.534 70.865 70.860 110.177 170.616 80.400 50.818 20.579 10.615 110.367 140.408 60.726 150.633 50.162 10.360 90.619 30.000 10.828 90.873 90.924 20.109 130.083 30.564 60.057 150.475 120.266 110.781 20.767 70.257 70.100 110.825 110.663 100.048 150.620 130.551 120.595 130.532 70.692 80.246 60.000 30.213 60.615 20.861 70.376 70.900 80.000 70.102 150.660 80.321 150.547 50.226 130.000 10.311 130.742 50.011 30.006 80.000 10.000 60.546 150.824 80.345 140.665 20.450 60.435 10.683 80.411 80.338 10.000 70.000 10.030 90.000 40.068 90.892 80.000 10.063 50.000 100.257 130.304 130.387 60.079 140.228 60.190 110.000 140.586 10.347 40.133 70.000 40.037 130.377 100.000 30.384 80.006 160.003 130.421 50.410 100.643 50.171 90.121 90.142 120.000 10.510 110.447 110.474 140.000 10.000 110.286 50.083 110.000 70.000 100.603 10.096 70.063 50.000 110.000 10.000 50.898 30.000 10.429 70.000 10.400 20.550 40.000 10.633 60.000 10.000 10.377 50.000 150.916 40.000 90.000 110.000 10.000 90.000 10.102 120.499 90.296 140.463 60.089 50.304 10.740 30.401 160.010 70.000 10.560 40.000 20.000 20.709 20.652 100.000 30.000 10.000 10.143 80.000 70.000 30.609 50.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
L3DETR-ScanNet_2000.336 80.533 110.279 60.155 100.801 90.689 40.946 60.539 110.660 70.759 40.380 140.333 140.583 40.000 140.788 100.529 100.740 80.261 120.679 90.940 120.525 100.860 80.883 70.226 130.613 90.397 60.720 110.512 50.565 120.620 30.417 40.775 130.629 60.158 20.298 120.579 110.000 10.835 60.883 60.927 10.114 110.079 40.511 100.073 110.508 50.312 60.629 60.861 50.192 140.098 130.908 30.636 110.032 170.563 170.514 150.664 60.505 100.697 70.225 90.000 30.264 20.411 120.860 80.321 130.960 30.058 60.109 130.776 30.526 50.557 30.303 90.000 10.339 120.712 70.000 40.014 70.000 10.000 60.638 120.856 40.641 70.579 110.107 170.119 110.661 110.416 70.000 30.000 70.000 10.007 170.000 40.067 100.910 50.000 10.000 100.000 100.463 110.448 80.294 140.324 10.293 30.211 80.108 80.448 80.068 170.141 60.000 40.330 30.699 10.000 30.256 110.192 60.000 150.355 80.418 70.209 170.146 120.679 30.101 170.000 10.503 130.687 20.671 80.000 10.000 110.174 110.117 60.000 70.122 70.515 20.104 60.259 20.312 30.000 10.000 50.765 120.000 10.369 120.000 10.183 80.422 110.000 10.646 40.000 10.000 10.565 20.001 140.125 170.010 70.002 100.000 10.487 10.000 10.075 140.548 40.420 90.233 140.082 80.138 110.430 120.427 130.000 120.000 10.549 60.000 20.000 20.074 80.409 160.000 30.000 10.000 10.152 70.051 30.000 30.598 60.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
IMFSegNet0.334 90.532 130.251 110.179 70.799 110.683 80.940 100.555 80.631 120.740 110.406 100.336 130.560 90.062 40.795 70.518 120.733 100.274 50.646 130.947 80.458 170.848 130.862 100.305 100.649 40.284 130.713 130.495 80.626 80.527 90.363 90.820 50.574 130.010 140.411 40.597 70.000 10.842 40.873 90.704 140.246 40.000 70.495 110.041 160.486 90.305 70.444 120.604 150.134 160.055 160.852 90.633 130.076 90.792 40.612 80.573 170.484 120.668 120.216 120.000 30.197 90.518 60.784 130.344 120.908 70.283 40.190 40.599 130.439 100.496 100.569 20.000 10.392 90.776 30.000 40.064 40.000 10.000 60.710 90.756 120.508 110.512 160.159 150.034 140.773 20.363 100.000 30.000 70.000 10.032 70.000 40.029 160.648 160.000 10.000 100.000 100.830 60.595 40.274 150.228 80.206 80.188 120.000 140.425 90.237 110.123 120.000 40.277 60.214 140.003 10.610 20.044 120.124 100.320 140.408 110.594 90.196 70.213 70.139 130.000 10.615 60.618 60.839 30.000 10.014 60.260 60.080 120.025 20.000 100.139 120.135 50.035 70.000 110.000 10.793 20.799 90.000 10.357 130.000 10.369 50.359 130.000 10.512 150.000 10.000 10.120 120.424 20.903 80.027 50.091 60.000 10.245 50.000 10.073 160.457 140.340 120.191 150.021 150.009 170.322 150.608 60.060 30.000 10.494 100.000 20.000 20.068 100.624 110.000 30.000 10.000 10.139 110.047 40.000 30.561 70.000 1
GSTran0.334 100.533 120.250 120.179 80.799 110.684 70.940 100.554 90.633 110.741 100.405 110.337 120.560 90.060 50.794 80.517 130.732 110.274 50.647 120.948 70.459 160.849 110.864 90.306 90.648 50.282 140.717 120.496 70.624 90.533 80.363 90.821 40.573 140.009 150.411 40.593 90.000 10.841 50.873 90.704 140.242 50.000 70.495 110.041 160.487 80.304 80.439 130.613 130.133 170.055 160.853 80.634 120.075 120.791 50.601 90.574 160.483 130.669 110.217 100.000 30.198 80.518 60.782 140.345 110.914 60.273 50.193 30.598 140.440 90.499 80.570 10.000 10.381 110.775 40.000 40.063 50.000 10.000 60.712 80.752 130.507 120.512 160.158 160.036 130.773 20.361 110.000 30.000 70.000 10.032 70.000 40.032 150.651 150.000 10.000 100.000 100.831 50.595 40.273 160.229 70.200 90.191 100.000 140.425 90.233 120.125 110.000 40.279 50.213 150.003 10.608 30.044 120.138 90.321 120.408 110.593 100.198 50.205 80.139 130.000 10.614 70.609 70.838 40.000 10.014 60.260 60.080 120.010 50.000 100.136 130.136 40.047 60.000 110.000 10.787 30.797 100.000 10.354 140.000 10.372 40.357 140.000 10.507 160.000 10.000 10.121 110.423 30.903 80.028 40.089 70.000 10.252 40.000 10.072 170.465 120.340 120.189 160.020 160.011 160.320 160.606 70.060 30.000 10.496 90.000 20.000 20.070 90.618 130.000 30.000 10.000 10.139 110.047 40.000 30.558 80.000 1
OA-CNN-L_ScanNet2000.333 110.558 50.269 90.124 130.821 50.703 30.946 60.569 50.662 40.748 90.487 30.455 40.572 70.000 140.789 90.534 90.736 90.271 80.713 40.949 60.498 140.877 30.860 110.332 70.706 10.474 30.788 70.406 130.637 60.495 110.355 110.805 70.592 120.015 130.396 80.602 60.000 10.799 110.876 70.713 130.276 20.000 70.493 130.080 90.448 140.363 50.661 40.833 60.262 60.125 70.823 120.665 90.076 90.720 80.557 100.637 90.517 90.672 100.227 80.000 30.158 120.496 80.843 110.352 100.835 130.000 70.103 140.711 50.527 40.526 60.320 80.000 10.568 60.625 110.067 10.000 90.000 10.001 50.806 60.836 70.621 100.591 80.373 80.314 50.668 100.398 90.003 20.000 70.000 10.016 160.024 20.043 130.906 60.000 10.052 60.000 100.384 120.330 120.342 80.100 120.223 70.183 130.112 70.476 60.313 70.130 90.196 30.112 120.370 110.000 30.234 120.071 90.160 70.403 60.398 130.492 140.197 60.076 130.272 50.000 10.200 160.560 100.735 70.000 10.000 110.000 120.110 80.002 60.021 80.412 50.000 120.000 80.000 110.000 10.000 50.794 110.000 10.445 50.000 10.022 100.509 70.000 10.517 130.000 10.000 10.001 170.245 70.915 50.024 60.089 70.000 10.262 30.000 10.103 110.524 70.392 110.515 40.013 170.251 40.411 130.662 40.001 110.000 10.473 120.000 20.000 20.150 50.699 90.000 30.000 10.000 10.166 60.000 70.024 20.000 110.000 1
PPT-SpUNet-F.T.0.332 120.556 60.270 70.123 140.816 60.682 90.946 60.549 100.657 80.756 50.459 70.376 90.550 110.001 120.807 40.616 40.727 120.267 90.691 50.942 110.530 90.872 50.874 80.330 80.542 140.374 80.792 50.400 140.673 40.572 70.433 20.793 90.623 70.008 160.351 100.594 80.000 10.783 130.876 70.833 40.213 60.000 70.537 80.091 70.519 40.304 80.620 80.942 20.264 50.124 80.855 70.695 50.086 80.646 100.506 160.658 70.535 60.715 40.314 20.000 30.241 40.608 30.897 20.359 80.858 110.000 70.076 170.611 110.392 120.509 70.378 60.000 10.579 40.565 150.000 40.000 90.000 10.000 60.755 70.806 90.661 40.572 130.350 90.181 70.660 120.300 140.000 30.000 70.000 10.023 120.000 40.042 140.930 40.000 10.000 100.077 70.584 90.392 100.339 90.185 100.171 120.308 20.006 130.563 30.256 80.150 40.000 40.002 160.345 120.000 30.045 140.197 50.063 110.323 110.453 40.600 80.163 110.037 150.349 40.000 10.672 30.679 40.753 50.000 10.000 110.000 120.117 60.000 70.000 100.291 80.000 120.000 80.039 70.000 10.000 50.899 20.000 10.374 110.000 10.000 120.545 50.000 10.634 50.000 10.000 10.074 130.223 80.914 60.000 90.021 90.000 10.000 90.000 10.112 60.498 100.649 10.383 100.095 20.135 120.449 110.432 120.008 90.000 10.518 70.000 20.000 20.000 110.796 50.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormer ScanNet200permissive0.326 130.539 100.265 100.131 120.806 80.670 120.943 90.535 120.662 40.705 160.423 90.407 60.505 130.003 110.765 130.582 70.686 150.227 160.680 80.943 100.601 20.854 100.892 60.335 60.417 170.357 100.724 100.453 110.632 70.596 50.432 30.783 110.512 160.021 120.244 150.637 20.000 10.787 120.873 90.743 110.000 170.000 70.534 90.110 40.499 60.289 100.626 70.620 120.168 150.204 40.849 100.679 80.117 50.633 110.684 30.650 80.552 50.684 90.312 30.000 30.175 110.429 110.865 50.413 40.837 120.000 70.145 80.626 90.451 80.487 110.513 30.000 10.529 70.613 120.000 40.033 60.000 10.000 60.828 50.871 30.622 90.587 90.411 70.137 100.645 140.343 120.000 30.000 70.000 10.022 130.000 40.026 170.829 110.000 10.022 80.089 60.842 40.253 140.318 110.296 20.178 110.291 30.224 30.584 20.200 140.132 80.000 40.128 110.227 130.000 30.230 130.047 110.149 80.331 100.412 90.618 70.164 100.102 110.522 30.000 10.655 40.378 120.469 150.000 10.000 110.000 120.105 90.000 70.000 100.483 30.000 120.000 80.028 80.000 10.000 50.906 10.000 10.339 150.000 10.000 120.457 90.000 10.612 80.000 10.000 10.408 40.000 150.900 100.000 90.000 110.000 10.029 80.000 10.074 150.455 150.479 60.427 70.079 90.140 80.496 80.414 140.022 60.000 10.471 130.000 20.000 20.000 110.722 70.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
AWCS0.305 140.508 140.225 140.142 110.782 140.634 170.937 140.489 150.578 140.721 120.364 150.355 110.515 120.023 90.764 140.523 110.707 140.264 110.633 140.922 140.507 130.886 10.804 150.179 150.436 160.300 120.656 160.529 30.501 150.394 130.296 160.820 50.603 90.131 30.179 170.619 30.000 10.707 160.865 130.773 60.171 70.010 60.484 140.063 130.463 130.254 130.332 160.649 110.220 110.100 110.729 150.613 150.071 130.582 140.628 70.702 40.424 150.749 20.137 150.000 30.142 130.360 130.863 60.305 140.877 100.000 70.173 50.606 120.337 140.478 120.154 150.000 10.253 140.664 80.000 40.000 90.000 10.000 60.626 130.782 100.302 160.602 70.185 130.282 60.651 130.317 130.000 30.000 70.000 10.022 130.000 40.154 20.876 90.000 10.014 90.063 90.029 170.553 70.467 30.084 130.124 140.157 160.049 120.373 130.252 90.097 150.000 40.219 70.542 30.000 30.392 70.172 80.000 150.339 90.417 80.533 130.093 150.115 100.195 90.000 10.516 100.288 150.741 60.000 10.001 100.233 90.056 140.000 70.159 60.334 70.077 90.000 80.000 110.000 10.000 50.749 130.000 10.411 80.000 10.008 110.452 100.000 10.595 100.000 10.000 10.220 100.006 120.894 120.006 80.000 110.000 10.000 90.000 10.112 60.504 80.404 100.551 30.093 40.129 140.484 100.381 170.000 120.000 10.396 140.000 20.000 20.620 30.402 170.000 30.000 10.000 10.142 90.000 70.000 30.512 90.000 1
: Long-Tailed 3D Semantic Segmentation with Adaptive Weight Constraint and Sampling. ICRA 2024
LGroundpermissive0.272 150.485 150.184 150.106 150.778 150.676 110.932 150.479 170.572 150.718 140.399 120.265 150.453 160.085 30.745 150.446 150.726 130.232 150.622 150.901 150.512 110.826 150.786 160.178 160.549 120.277 150.659 150.381 150.518 140.295 170.323 140.777 120.599 100.028 100.321 110.363 160.000 10.708 150.858 140.746 100.063 150.022 50.457 150.077 100.476 110.243 150.402 140.397 170.233 100.077 150.720 170.610 160.103 60.629 120.437 170.626 110.446 140.702 60.190 130.005 10.058 160.322 140.702 160.244 150.768 140.000 70.134 120.552 150.279 160.395 140.147 160.000 10.207 150.612 130.000 40.000 90.000 10.000 60.658 110.566 140.323 150.525 150.229 120.179 80.467 170.154 160.000 30.002 50.000 10.051 10.000 40.127 40.703 120.000 10.000 100.216 10.112 160.358 110.547 20.187 90.092 160.156 170.055 100.296 150.252 90.143 50.000 40.014 140.398 70.000 30.028 160.173 70.000 150.265 160.348 140.415 160.179 80.019 160.218 80.000 10.597 80.274 160.565 130.000 10.012 80.000 120.039 160.022 30.000 100.117 150.000 120.000 80.000 110.000 10.000 50.324 160.000 10.384 90.000 10.000 120.251 170.000 10.566 110.000 10.000 10.066 140.404 40.886 130.199 20.000 110.000 10.059 70.000 10.136 10.540 50.127 170.295 110.085 70.143 60.514 70.413 150.000 120.000 10.498 80.000 20.000 20.000 110.623 120.000 30.000 10.000 10.132 150.000 70.000 30.000 110.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 160.463 160.154 170.102 160.771 160.650 160.932 150.483 160.571 160.710 150.331 160.250 160.492 140.044 60.703 160.419 170.606 170.227 160.621 160.865 170.531 80.771 170.813 140.291 110.484 150.242 160.612 170.282 170.440 170.351 150.299 150.622 160.593 110.027 110.293 130.310 170.000 10.757 140.858 140.737 120.150 90.164 10.368 170.084 80.381 160.142 170.357 150.720 100.214 120.092 140.724 160.596 170.056 140.655 90.525 140.581 150.352 170.594 150.056 170.000 30.014 170.224 150.772 150.205 170.720 160.000 70.159 70.531 160.163 170.294 160.136 170.000 10.169 160.589 140.000 40.000 90.000 10.002 40.663 100.466 170.265 170.582 100.337 100.016 150.559 150.084 170.000 30.000 70.000 10.036 50.000 40.125 50.670 130.000 10.102 30.071 80.164 150.406 90.386 70.046 160.068 170.159 150.117 60.284 160.111 160.094 160.000 40.000 170.197 160.000 30.044 150.013 150.002 140.228 170.307 170.588 110.025 170.545 50.134 150.000 10.655 40.302 140.282 170.000 10.060 20.000 120.035 170.000 70.000 100.097 170.000 120.000 80.005 100.000 10.000 50.096 170.000 10.334 160.000 10.000 120.274 160.000 10.513 140.000 10.000 10.280 80.194 90.897 110.000 90.000 110.000 10.000 90.000 10.108 90.279 170.189 160.141 170.059 140.272 20.307 170.445 100.003 100.000 10.353 150.000 20.026 10.000 110.581 150.001 20.000 10.000 10.093 170.002 60.000 30.000 110.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrainpermissive0.249 170.455 170.171 160.079 170.766 170.659 150.930 170.494 140.542 170.700 170.314 170.215 170.430 170.121 10.697 170.441 160.683 160.235 140.609 170.895 160.476 150.816 160.770 170.186 140.634 60.216 170.734 90.340 160.471 160.307 160.293 170.591 170.542 150.076 70.205 160.464 140.000 10.484 170.832 160.766 70.052 160.000 70.413 160.059 140.418 150.222 160.318 170.609 140.206 130.112 90.743 140.625 140.076 90.579 150.548 130.590 140.371 160.552 170.081 160.003 20.142 130.201 160.638 170.233 160.686 170.000 70.142 90.444 170.375 130.247 170.198 140.000 10.128 170.454 170.019 20.097 10.000 10.000 60.553 140.557 150.373 130.545 140.164 140.014 160.547 160.174 150.000 30.002 50.000 10.037 40.000 40.063 110.664 140.000 10.000 100.130 20.170 140.152 160.335 100.079 140.110 150.175 140.098 90.175 170.166 150.045 170.207 20.014 140.465 50.000 30.001 170.001 170.046 120.299 150.327 160.537 120.033 160.012 170.186 100.000 10.205 150.377 130.463 160.000 10.058 30.000 120.055 150.041 10.000 100.105 160.000 120.000 80.000 110.000 10.000 50.398 150.000 10.308 170.000 10.000 120.319 150.000 10.543 120.000 10.000 10.062 150.004 130.862 150.000 90.000 110.000 10.000 90.000 10.123 50.316 160.225 150.250 130.094 30.180 50.332 140.441 110.000 120.000 10.310 160.000 20.000 20.000 110.592 140.000 30.000 10.000 10.203 30.000 70.000 30.000 110.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg aphead apcommon aptail apchairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.278 10.383 10.263 20.168 10.661 20.465 10.572 10.665 30.391 20.121 50.304 10.015 20.647 10.349 10.474 10.489 10.321 10.816 60.351 30.722 10.402 40.195 10.515 40.082 20.795 10.215 20.396 10.377 20.082 50.724 10.586 10.015 30.277 10.377 60.201 10.475 30.572 10.778 30.089 20.759 10.556 20.068 10.506 10.467 10.323 40.778 20.427 20.027 30.789 10.744 10.003 20.570 20.561 10.337 20.265 10.711 10.258 20.031 10.569 10.311 10.441 20.179 11.000 10.000 20.233 20.411 20.283 20.380 10.667 10.016 10.048 40.418 30.139 20.173 10.000 10.086 20.014 30.500 10.384 10.497 10.044 40.032 20.752 10.287 20.003 10.000 20.007 10.208 10.000 10.001 30.349 20.008 20.014 20.509 10.500 20.323 10.023 30.176 20.107 20.105 40.000 20.605 10.378 10.016 20.000 10.400 10.192 10.000 10.048 30.037 30.000 20.275 10.119 10.810 10.258 20.006 40.083 60.000 10.568 20.377 20.708 10.000 10.005 20.147 20.014 30.000 20.556 20.085 10.325 10.500 10.083 20.004 20.000 10.590 10.000 10.365 10.000 10.116 10.491 10.000 10.626 10.000 10.000 10.579 10.391 10.050 50.000 10.028 20.000 10.222 20.000 10.063 10.302 10.356 20.149 50.573 10.415 10.013 60.002 50.004 10.000 10.005 50.000 10.000 10.444 10.514 10.000 20.028 10.000 20.156 20.267 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ODIN - Ins200permissive0.265 20.349 20.268 10.163 20.485 60.366 40.549 20.492 60.421 10.229 10.265 30.003 30.609 20.297 20.320 20.327 20.251 30.848 40.314 50.526 30.324 50.138 20.529 20.178 10.440 50.186 60.306 20.546 10.160 10.494 40.476 30.016 20.231 30.594 10.000 30.615 10.357 30.630 40.141 10.167 30.665 10.054 20.360 20.451 20.610 10.769 40.640 10.032 20.746 20.698 20.040 10.389 40.550 20.371 10.257 20.617 40.310 10.000 30.481 30.022 50.463 10.160 21.000 10.125 10.193 30.267 30.253 30.156 30.000 50.000 20.332 10.606 20.444 10.000 20.000 10.281 11.000 10.417 30.344 20.238 60.218 10.000 30.655 30.506 10.000 20.052 10.000 30.091 30.000 10.035 10.370 10.000 30.000 30.250 20.903 10.037 60.031 10.221 10.197 10.285 10.037 10.191 60.200 30.083 10.000 10.200 30.115 20.000 10.250 10.552 10.278 10.077 20.107 20.389 20.674 10.565 10.278 10.000 10.361 60.333 40.361 40.000 10.000 30.438 10.451 10.000 21.000 10.074 20.204 20.250 20.250 10.000 30.000 10.493 20.000 10.083 50.000 10.000 30.317 20.000 10.481 20.000 10.000 10.188 30.333 20.345 20.000 10.333 10.000 10.333 10.000 10.035 30.266 20.478 10.506 10.054 30.205 30.119 50.067 20.000 20.000 10.210 10.000 10.000 10.000 20.389 20.097 10.000 20.000 20.111 30.000 20.000 20.889 20.000 1
TD3D Scannet200permissive0.211 30.332 30.177 30.103 30.662 10.413 20.463 30.705 10.192 40.145 20.266 20.215 10.452 50.209 30.222 60.219 60.315 20.893 10.380 20.617 20.439 20.047 50.646 10.080 30.610 30.253 10.237 30.293 30.135 20.379 60.494 20.048 10.252 20.451 30.184 20.483 20.395 20.852 10.083 30.551 20.278 30.036 30.337 30.266 30.544 20.963 10.079 60.039 10.740 30.604 30.000 30.586 10.283 30.282 30.059 30.633 30.028 30.004 20.559 20.309 20.420 30.028 61.000 10.000 20.456 10.411 10.372 10.060 50.046 40.000 20.040 50.694 10.083 30.000 20.000 10.000 30.000 40.083 50.252 30.260 50.200 20.160 10.669 20.111 30.000 20.000 20.006 20.169 20.000 10.007 20.296 30.032 10.074 10.139 40.000 30.321 20.031 20.108 30.088 30.157 20.000 20.231 50.026 60.000 30.000 10.356 20.052 30.000 10.240 20.147 20.000 20.015 30.046 40.144 40.073 40.414 20.222 50.000 10.806 10.343 30.486 30.000 10.008 10.038 30.083 20.002 10.028 30.074 20.032 30.150 30.039 30.008 10.000 10.250 50.000 10.125 40.000 10.052 20.260 40.000 10.143 60.000 10.000 10.543 20.207 30.404 10.000 10.003 30.000 10.000 30.000 10.037 20.093 50.272 30.342 20.039 50.281 20.249 30.224 10.000 20.000 10.074 20.000 10.000 10.000 20.278 30.000 20.000 20.889 10.323 10.000 20.014 10.000 30.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
LGround Inst.permissive0.154 40.275 40.108 40.060 40.573 30.381 30.434 40.654 40.190 50.141 30.097 40.000 40.503 40.180 40.252 40.242 50.242 40.881 30.448 10.494 40.429 30.078 30.364 60.024 40.654 20.213 40.222 40.239 40.099 40.616 20.363 40.000 40.092 40.444 40.000 30.383 50.209 60.815 20.030 40.000 40.166 40.002 50.295 60.099 50.364 30.778 20.177 40.001 50.427 60.585 50.000 30.470 30.268 60.205 40.045 40.642 20.007 40.000 30.333 60.148 30.407 40.130 31.000 10.000 20.156 50.189 40.097 50.169 20.000 50.000 20.056 30.400 40.000 40.000 20.000 10.000 30.556 20.278 40.203 40.323 40.019 50.000 30.402 50.026 40.000 20.000 20.000 30.044 40.000 10.000 40.037 50.000 30.000 30.181 30.000 30.127 30.006 50.028 50.023 40.115 30.000 20.327 20.267 20.000 30.000 10.000 50.028 40.000 10.000 40.000 40.000 20.003 40.048 30.135 50.222 30.089 30.278 10.000 10.514 30.333 40.611 20.000 10.000 30.000 40.000 40.000 20.000 40.037 40.000 40.000 40.000 40.000 30.000 10.322 30.000 10.209 20.000 10.000 30.278 30.000 10.302 40.000 10.000 10.143 40.148 40.000 60.000 10.000 40.000 10.000 30.000 10.015 40.064 60.000 40.272 30.031 60.000 50.257 20.028 30.000 20.000 10.041 30.000 10.000 10.000 20.222 60.000 20.000 20.000 20.000 60.000 20.000 20.000 30.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.130 50.246 50.083 50.043 60.547 50.236 50.415 50.672 20.141 60.133 40.067 50.000 40.521 30.114 60.238 50.289 30.232 50.883 20.182 60.373 60.486 10.076 40.488 50.022 50.529 40.199 50.110 50.217 50.100 30.460 50.319 50.000 40.025 60.472 20.000 30.394 40.210 50.537 50.004 50.000 40.083 60.000 60.299 50.061 60.201 60.761 50.084 50.008 40.720 40.557 60.000 30.317 60.280 40.094 60.020 60.564 60.000 50.000 30.400 40.048 40.259 50.101 41.000 10.000 20.190 40.142 60.094 60.137 40.089 30.000 20.101 20.355 60.000 40.000 20.000 10.000 30.000 40.444 20.082 60.384 20.000 60.000 30.334 60.004 60.000 20.000 20.000 30.041 50.000 10.000 40.026 60.000 30.000 30.000 50.000 30.082 50.022 40.000 60.021 50.088 50.000 20.241 40.033 50.000 30.000 10.067 40.000 60.000 10.000 40.000 40.000 20.000 50.026 50.262 30.016 50.000 50.278 10.000 10.500 40.394 10.028 60.000 10.000 30.000 40.000 40.000 20.000 40.019 50.000 40.000 40.000 40.000 30.000 10.156 60.000 10.032 60.000 10.000 30.194 60.000 10.248 50.000 10.000 10.099 50.019 50.308 30.000 10.000 40.000 10.000 30.000 10.007 50.122 30.000 40.175 40.063 20.000 50.271 10.000 60.000 20.000 10.000 60.000 10.000 10.000 20.278 30.000 20.000 20.000 20.111 30.000 20.000 20.000 30.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.123 60.223 60.082 60.046 50.564 40.152 60.394 60.578 50.235 30.116 60.034 60.000 40.348 60.119 50.297 30.285 40.202 60.838 50.323 40.407 50.184 60.037 60.516 30.013 60.424 60.214 30.093 60.105 60.078 60.542 30.250 60.000 40.064 50.444 40.000 30.224 60.231 40.537 50.001 60.000 40.126 50.004 40.308 40.193 40.244 50.343 60.228 30.000 60.441 50.588 40.000 30.338 50.275 50.189 50.030 50.600 50.000 50.000 30.378 50.000 60.108 60.098 51.000 10.000 20.096 60.172 50.144 40.011 60.125 20.000 20.000 60.376 50.000 40.000 20.000 10.000 30.000 40.042 60.141 50.377 30.051 30.000 30.483 40.017 50.000 20.000 20.000 30.022 60.000 10.000 40.065 40.000 30.000 30.000 50.000 30.094 40.000 60.042 40.000 60.064 60.000 20.259 30.089 40.000 30.000 10.000 50.022 50.000 10.000 40.000 40.000 20.000 50.018 60.111 60.000 60.000 50.278 10.000 10.444 50.333 40.333 50.000 10.000 30.000 40.000 40.000 20.000 40.000 60.000 40.000 40.000 40.000 30.000 10.267 40.000 10.184 30.000 10.000 30.211 50.000 10.378 30.000 10.000 10.063 60.000 60.275 40.000 10.000 40.000 10.000 30.000 10.007 60.105 40.000 40.032 60.045 40.198 40.171 40.028 30.000 20.000 10.006 40.000 10.000 10.000 20.278 30.000 20.000 20.000 20.044 50.000 20.000 20.000 30.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PTv3 ScanNet0.794 30.941 30.813 210.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 360.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 300.833 290.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 350.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 390.685 170.714 40.979 10.594 100.310 300.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 230.818 160.836 260.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 510.805 190.708 100.916 390.898 50.801 4
TTT-KD0.773 70.646 970.818 160.809 410.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 190.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 310.751 260.854 180.540 250.903 110.630 390.672 170.963 160.565 260.357 100.788 50.900 140.737 310.802 200.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 260.849 130.786 50.846 300.566 120.876 190.690 130.674 160.960 190.576 220.226 730.753 270.904 110.777 160.815 90.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 310.709 50.643 270.958 230.587 160.295 380.753 270.884 230.758 230.815 90.725 50.927 270.867 270.743 19
OccuSeg+Semantic0.764 110.758 610.796 340.839 240.746 300.907 10.562 140.850 300.680 190.672 170.978 60.610 40.335 210.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 26
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 330.711 40.640 310.958 230.592 110.217 790.762 200.888 200.758 230.813 130.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 200.762 170.856 150.562 140.920 40.657 290.658 210.958 230.589 140.337 180.782 60.879 240.787 110.779 410.678 220.926 290.880 130.799 5
DTC0.757 150.843 290.820 120.847 160.791 20.862 110.511 380.870 220.707 60.652 230.954 400.604 80.279 490.760 210.942 30.734 320.766 500.701 130.884 610.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 60.776 90.837 390.548 200.896 150.649 310.675 150.962 170.586 170.335 210.771 140.802 540.770 190.787 380.691 170.936 200.880 130.761 13
ConDaFormer0.755 170.927 60.822 100.836 260.801 10.849 250.516 350.864 270.651 300.680 130.958 230.584 190.282 460.759 230.855 350.728 340.802 200.678 220.880 660.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
LSK3DNetpermissive0.755 170.899 160.823 80.843 200.764 160.838 380.584 20.845 340.717 20.638 330.956 300.580 210.229 720.640 490.900 140.750 260.813 130.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
PNE0.755 170.786 450.835 50.834 280.758 190.849 250.570 100.836 380.648 320.668 190.978 60.581 200.367 70.683 400.856 330.804 80.801 240.678 220.961 60.889 70.716 35
P. Hermosilla: Point Neighborhood Embeddings.
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 330.766 180.926 60.767 200.797 280.644 380.942 130.876 190.722 31
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 200.906 140.793 380.802 470.689 460.825 520.556 160.867 230.681 180.602 500.960 190.555 320.365 80.779 80.859 300.747 270.795 320.717 80.917 380.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointConvFormer0.749 220.793 430.790 390.807 430.750 280.856 150.524 310.881 180.588 580.642 300.977 100.591 120.274 520.781 70.929 50.804 80.796 290.642 390.947 100.885 100.715 36
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 220.909 120.818 160.811 390.752 240.839 370.485 530.842 350.673 210.644 260.957 280.528 420.305 320.773 120.859 300.788 100.818 80.693 160.916 390.856 350.723 30
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 240.623 1000.804 280.859 50.745 310.824 540.501 420.912 80.690 130.685 100.956 300.567 250.320 270.768 170.918 70.720 390.802 200.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 150.803 290.845 180.757 210.846 300.512 370.825 420.696 110.645 250.956 300.576 220.262 630.744 330.861 290.742 290.770 480.705 110.899 510.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 260.771 550.819 140.848 150.702 430.865 100.397 910.899 130.699 90.664 200.948 620.588 150.330 230.746 320.851 390.764 210.796 290.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 260.870 210.838 30.858 60.729 360.850 240.501 420.874 200.587 590.658 210.956 300.564 270.299 350.765 190.900 140.716 420.812 150.631 440.939 160.858 330.709 37
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 280.725 780.814 200.837 250.751 260.831 460.514 360.896 150.674 200.684 110.960 190.564 270.303 340.773 120.820 480.713 450.798 270.690 190.923 310.875 200.757 14
ODINpermissive0.744 290.658 930.752 640.870 30.714 400.843 330.569 110.919 50.703 80.622 400.949 590.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 390.725 28
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Retro-FPN0.744 290.842 300.800 300.767 610.740 320.836 410.541 230.914 70.672 220.626 370.958 230.552 330.272 540.777 90.886 220.696 520.801 240.674 290.941 140.858 330.717 33
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 310.620 1010.799 330.849 130.730 350.822 560.493 500.897 140.664 230.681 120.955 340.562 290.378 40.760 210.903 120.738 300.801 240.673 300.907 430.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 320.860 240.765 550.819 340.769 140.848 270.533 270.829 400.663 240.631 360.955 340.586 170.274 520.753 270.896 170.729 330.760 560.666 330.921 330.855 370.733 22
LRPNet0.742 320.816 380.806 270.807 430.752 240.828 500.575 80.839 370.699 90.637 340.954 400.520 460.320 270.755 260.834 430.760 220.772 450.676 260.915 410.862 300.717 33
LargeKernel3D0.739 340.909 120.820 120.806 450.740 320.852 220.545 210.826 410.594 570.643 270.955 340.541 350.263 620.723 380.858 320.775 180.767 490.678 220.933 230.848 430.694 42
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 350.776 510.790 390.851 110.754 230.854 180.491 520.866 250.596 560.686 90.955 340.536 370.342 160.624 560.869 260.787 110.802 200.628 450.927 270.875 200.704 39
MinkowskiNetpermissive0.736 350.859 250.818 160.832 300.709 410.840 350.521 330.853 290.660 260.643 270.951 510.544 340.286 440.731 360.893 180.675 610.772 450.683 210.874 730.852 410.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 370.890 170.837 40.864 40.726 370.873 50.530 300.824 430.489 930.647 240.978 60.609 50.336 190.624 560.733 640.758 230.776 430.570 710.949 90.877 160.728 24
online3d0.727 380.715 830.777 480.854 80.748 290.858 130.497 470.872 210.572 660.639 320.957 280.523 430.297 370.750 300.803 530.744 280.810 160.587 670.938 180.871 250.719 32
PointTransformer++0.725 390.727 760.811 240.819 340.765 150.841 340.502 410.814 480.621 420.623 390.955 340.556 310.284 450.620 580.866 270.781 140.757 600.648 360.932 250.862 300.709 37
SparseConvNet0.725 390.647 960.821 110.846 170.721 380.869 60.533 270.754 640.603 520.614 420.955 340.572 240.325 250.710 390.870 250.724 370.823 40.628 450.934 220.865 290.683 45
MatchingNet0.724 410.812 400.812 220.810 400.735 340.834 430.495 490.860 280.572 660.602 500.954 400.512 480.280 480.757 240.845 410.725 360.780 400.606 550.937 190.851 420.700 41
INS-Conv-semantic0.717 420.751 640.759 580.812 380.704 420.868 70.537 260.842 350.609 480.608 460.953 440.534 390.293 390.616 590.864 280.719 410.793 330.640 400.933 230.845 470.663 51
PointMetaBase0.714 430.835 310.785 430.821 320.684 480.846 300.531 290.865 260.614 430.596 540.953 440.500 510.246 680.674 410.888 200.692 530.764 520.624 470.849 880.844 480.675 47
contrastBoundarypermissive0.705 440.769 580.775 490.809 410.687 470.820 590.439 790.812 490.661 250.591 560.945 700.515 470.171 980.633 530.856 330.720 390.796 290.668 320.889 580.847 440.689 43
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 450.774 530.800 300.793 520.760 180.847 290.471 570.802 520.463 1000.634 350.968 140.491 540.271 560.726 370.910 90.706 470.815 90.551 830.878 670.833 490.570 83
RFCR0.702 460.889 180.745 700.813 370.672 510.818 630.493 500.815 470.623 400.610 440.947 640.470 630.249 670.594 630.848 400.705 480.779 410.646 370.892 560.823 550.611 66
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 470.825 350.796 340.723 680.716 390.832 450.433 810.816 450.634 370.609 450.969 120.418 890.344 140.559 750.833 440.715 430.808 180.560 770.902 480.847 440.680 46
JSENetpermissive0.699 480.881 200.762 560.821 320.667 520.800 760.522 320.792 550.613 440.607 470.935 900.492 530.205 850.576 680.853 370.691 550.758 580.652 350.872 760.828 520.649 55
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 490.743 670.794 360.655 910.684 480.822 560.497 470.719 740.622 410.617 410.977 100.447 760.339 170.750 300.664 810.703 500.790 360.596 600.946 120.855 370.647 56
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 500.732 720.772 500.786 530.677 500.866 90.517 340.848 310.509 860.626 370.952 490.536 370.225 750.545 810.704 710.689 580.810 160.564 760.903 470.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 510.884 190.754 620.795 500.647 590.818 630.422 830.802 520.612 450.604 480.945 700.462 660.189 930.563 740.853 370.726 350.765 510.632 430.904 450.821 580.606 70
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 520.704 850.741 740.754 650.656 540.829 480.501 420.741 690.609 480.548 640.950 550.522 450.371 50.633 530.756 590.715 430.771 470.623 480.861 840.814 610.658 52
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 530.866 220.748 670.819 340.645 610.794 790.450 690.802 520.587 590.604 480.945 700.464 650.201 880.554 770.840 420.723 380.732 710.602 580.907 430.822 570.603 73
VACNN++0.684 540.728 750.757 610.776 580.690 440.804 740.464 620.816 450.577 650.587 570.945 700.508 500.276 510.671 420.710 690.663 660.750 640.589 650.881 640.832 510.653 54
KP-FCNN0.684 540.847 280.758 600.784 550.647 590.814 660.473 560.772 580.605 500.594 550.935 900.450 740.181 960.587 640.805 520.690 560.785 390.614 510.882 630.819 590.632 62
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 540.712 840.784 440.782 570.658 530.835 420.499 460.823 440.641 340.597 530.950 550.487 560.281 470.575 690.619 850.647 740.764 520.620 500.871 790.846 460.688 44
PointContrast_LA_SEM0.683 570.757 620.784 440.786 530.639 630.824 540.408 860.775 570.604 510.541 660.934 940.532 400.269 580.552 780.777 570.645 770.793 330.640 400.913 420.824 540.671 48
Superpoint Network0.683 570.851 270.728 780.800 490.653 560.806 720.468 590.804 500.572 660.602 500.946 670.453 730.239 710.519 860.822 460.689 580.762 550.595 620.895 540.827 530.630 63
VI-PointConv0.676 590.770 570.754 620.783 560.621 670.814 660.552 180.758 620.571 690.557 620.954 400.529 410.268 600.530 840.682 750.675 610.719 740.603 570.888 590.833 490.665 50
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 600.789 440.748 670.763 630.635 650.814 660.407 880.747 660.581 630.573 590.950 550.484 570.271 560.607 600.754 600.649 710.774 440.596 600.883 620.823 550.606 70
SALANet0.670 610.816 380.770 530.768 600.652 570.807 710.451 660.747 660.659 280.545 650.924 1000.473 620.149 1080.571 710.811 510.635 810.746 650.623 480.892 560.794 750.570 83
O3DSeg0.668 620.822 360.771 520.496 1120.651 580.833 440.541 230.761 610.555 750.611 430.966 150.489 550.370 60.388 1050.580 880.776 170.751 620.570 710.956 70.817 600.646 57
PointConvpermissive0.666 630.781 480.759 580.699 760.644 620.822 560.475 550.779 560.564 720.504 830.953 440.428 830.203 870.586 660.754 600.661 670.753 610.588 660.902 480.813 630.642 58
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 630.703 860.781 460.751 670.655 550.830 470.471 570.769 590.474 960.537 680.951 510.475 610.279 490.635 510.698 740.675 610.751 620.553 820.816 950.806 650.703 40
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 650.746 650.708 810.722 690.638 640.820 590.451 660.566 1020.599 540.541 660.950 550.510 490.313 290.648 470.819 490.616 860.682 890.590 640.869 800.810 640.656 53
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 660.558 1080.751 650.655 910.690 440.722 1010.453 650.867 230.579 640.576 580.893 1120.523 430.293 390.733 350.571 900.692 530.659 960.606 550.875 700.804 670.668 49
DCM-Net0.658 660.778 490.702 840.806 450.619 680.813 690.468 590.693 820.494 890.524 740.941 820.449 750.298 360.510 880.821 470.675 610.727 730.568 740.826 930.803 680.637 60
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 680.698 880.743 720.650 930.564 850.820 590.505 400.758 620.631 380.479 870.945 700.480 590.226 730.572 700.774 580.690 560.735 690.614 510.853 870.776 900.597 76
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 690.752 630.734 760.664 890.583 800.815 650.399 900.754 640.639 350.535 700.942 800.470 630.309 310.665 430.539 920.650 700.708 790.635 420.857 860.793 770.642 58
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 700.778 490.731 770.699 760.577 810.829 480.446 710.736 700.477 950.523 760.945 700.454 700.269 580.484 950.749 630.618 840.738 670.599 590.827 920.792 800.621 65
PointConv-SFPN0.641 710.776 510.703 830.721 700.557 880.826 510.451 660.672 870.563 730.483 860.943 790.425 860.162 1030.644 480.726 650.659 680.709 780.572 700.875 700.786 850.559 89
MVPNetpermissive0.641 710.831 320.715 790.671 860.590 760.781 850.394 920.679 840.642 330.553 630.937 870.462 660.256 640.649 460.406 1050.626 820.691 860.666 330.877 680.792 800.608 69
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 730.717 820.701 850.692 790.576 820.801 750.467 610.716 750.563 730.459 930.953 440.429 820.169 1000.581 670.854 360.605 870.710 760.550 840.894 550.793 770.575 81
FPConvpermissive0.639 740.785 460.760 570.713 740.603 710.798 770.392 940.534 1070.603 520.524 740.948 620.457 680.250 660.538 820.723 670.598 910.696 840.614 510.872 760.799 700.567 86
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 750.797 420.769 540.641 980.590 760.820 590.461 630.537 1060.637 360.536 690.947 640.388 960.206 840.656 440.668 790.647 740.732 710.585 680.868 810.793 770.473 109
PointSPNet0.637 760.734 710.692 920.714 730.576 820.797 780.446 710.743 680.598 550.437 980.942 800.403 920.150 1070.626 550.800 550.649 710.697 830.557 800.846 890.777 890.563 87
SConv0.636 770.830 330.697 880.752 660.572 840.780 870.445 730.716 750.529 790.530 710.951 510.446 770.170 990.507 900.666 800.636 800.682 890.541 900.886 600.799 700.594 77
Supervoxel-CNN0.635 780.656 940.711 800.719 710.613 690.757 960.444 760.765 600.534 780.566 600.928 980.478 600.272 540.636 500.531 940.664 650.645 1000.508 980.864 830.792 800.611 66
joint point-basedpermissive0.634 790.614 1020.778 470.667 880.633 660.825 520.420 840.804 500.467 980.561 610.951 510.494 520.291 410.566 720.458 1000.579 970.764 520.559 790.838 900.814 610.598 75
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 800.731 730.688 950.675 830.591 750.784 840.444 760.565 1030.610 460.492 840.949 590.456 690.254 650.587 640.706 700.599 900.665 950.612 540.868 810.791 830.579 80
PointNet2-SFPN0.631 810.771 550.692 920.672 840.524 940.837 390.440 780.706 800.538 770.446 950.944 760.421 880.219 780.552 780.751 620.591 930.737 680.543 890.901 500.768 920.557 90
APCF-Net0.631 810.742 680.687 970.672 840.557 880.792 820.408 860.665 890.545 760.508 800.952 490.428 830.186 940.634 520.702 720.620 830.706 800.555 810.873 740.798 720.581 79
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 810.626 990.745 700.801 480.607 700.751 970.506 390.729 730.565 710.491 850.866 1150.434 780.197 910.595 620.630 840.709 460.705 810.560 770.875 700.740 1000.491 104
FusionAwareConv0.630 840.604 1040.741 740.766 620.590 760.747 980.501 420.734 710.503 880.527 720.919 1040.454 700.323 260.550 800.420 1040.678 600.688 870.544 870.896 530.795 740.627 64
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 850.800 410.625 1070.719 710.545 910.806 720.445 730.597 970.448 1030.519 780.938 860.481 580.328 240.489 940.499 990.657 690.759 570.592 630.881 640.797 730.634 61
SegGroup_sempermissive0.627 860.818 370.747 690.701 750.602 720.764 930.385 980.629 940.490 910.508 800.931 970.409 910.201 880.564 730.725 660.618 840.692 850.539 910.873 740.794 750.548 93
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 870.830 330.694 900.757 640.563 860.772 910.448 700.647 920.520 820.509 790.949 590.431 810.191 920.496 920.614 860.647 740.672 930.535 940.876 690.783 860.571 82
dtc_net0.625 870.703 860.751 650.794 510.535 920.848 270.480 540.676 860.528 800.469 900.944 760.454 700.004 1200.464 970.636 830.704 490.758 580.548 860.924 300.787 840.492 103
Weakly-Openseg v30.625 870.924 80.787 420.620 1000.555 900.811 700.393 930.666 880.382 1110.520 770.953 440.250 1150.208 820.604 610.670 770.644 780.742 660.538 920.919 360.803 680.513 101
HPEIN0.618 900.729 740.668 980.647 950.597 740.766 920.414 850.680 830.520 820.525 730.946 670.432 790.215 800.493 930.599 870.638 790.617 1050.570 710.897 520.806 650.605 72
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 910.858 260.772 500.489 1130.532 930.792 820.404 890.643 930.570 700.507 820.935 900.414 900.046 1170.510 880.702 720.602 890.705 810.549 850.859 850.773 910.534 96
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 920.760 600.667 990.649 940.521 950.793 800.457 640.648 910.528 800.434 1000.947 640.401 930.153 1060.454 980.721 680.648 730.717 750.536 930.904 450.765 930.485 105
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 930.634 980.743 720.697 780.601 730.781 850.437 800.585 1000.493 900.446 950.933 950.394 940.011 1190.654 450.661 820.603 880.733 700.526 950.832 910.761 950.480 106
LAP-D0.594 940.720 800.692 920.637 990.456 1040.773 900.391 960.730 720.587 590.445 970.940 840.381 970.288 420.434 1010.453 1020.591 930.649 980.581 690.777 990.749 990.610 68
DPC0.592 950.720 800.700 860.602 1040.480 1000.762 950.380 990.713 780.585 620.437 980.940 840.369 990.288 420.434 1010.509 980.590 950.639 1030.567 750.772 1000.755 970.592 78
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 960.766 590.659 1020.683 810.470 1030.740 1000.387 970.620 960.490 910.476 880.922 1020.355 1020.245 690.511 870.511 970.571 980.643 1010.493 1020.872 760.762 940.600 74
ROSMRF0.580 970.772 540.707 820.681 820.563 860.764 930.362 1010.515 1080.465 990.465 920.936 890.427 850.207 830.438 990.577 890.536 1010.675 920.486 1030.723 1060.779 870.524 98
SD-DETR0.576 980.746 650.609 1110.445 1170.517 960.643 1120.366 1000.714 770.456 1010.468 910.870 1140.432 790.264 610.558 760.674 760.586 960.688 870.482 1040.739 1040.733 1020.537 95
SQN_0.1%0.569 990.676 900.696 890.657 900.497 970.779 880.424 820.548 1040.515 840.376 1050.902 1110.422 870.357 100.379 1060.456 1010.596 920.659 960.544 870.685 1090.665 1130.556 91
TextureNetpermissive0.566 1000.672 920.664 1000.671 860.494 980.719 1020.445 730.678 850.411 1090.396 1030.935 900.356 1010.225 750.412 1030.535 930.565 990.636 1040.464 1060.794 980.680 1100.568 85
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 1010.648 950.700 860.770 590.586 790.687 1060.333 1050.650 900.514 850.475 890.906 1080.359 1000.223 770.340 1080.442 1030.422 1120.668 940.501 990.708 1070.779 870.534 96
Pointnet++ & Featurepermissive0.557 1020.735 700.661 1010.686 800.491 990.744 990.392 940.539 1050.451 1020.375 1060.946 670.376 980.205 850.403 1040.356 1080.553 1000.643 1010.497 1000.824 940.756 960.515 99
GMLPs0.538 1030.495 1130.693 910.647 950.471 1020.793 800.300 1080.477 1090.505 870.358 1070.903 1100.327 1050.081 1140.472 960.529 950.448 1100.710 760.509 960.746 1020.737 1010.554 92
PanopticFusion-label0.529 1040.491 1140.688 950.604 1030.386 1090.632 1130.225 1190.705 810.434 1060.293 1130.815 1170.348 1030.241 700.499 910.669 780.507 1030.649 980.442 1120.796 970.602 1170.561 88
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1050.676 900.591 1140.609 1010.442 1050.774 890.335 1040.597 970.422 1080.357 1080.932 960.341 1040.094 1130.298 1100.528 960.473 1080.676 910.495 1010.602 1150.721 1050.349 117
Online SegFusion0.515 1060.607 1030.644 1050.579 1060.434 1060.630 1140.353 1020.628 950.440 1040.410 1010.762 1200.307 1070.167 1010.520 850.403 1060.516 1020.565 1080.447 1100.678 1100.701 1070.514 100
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1070.558 1080.608 1120.424 1190.478 1010.690 1050.246 1150.586 990.468 970.450 940.911 1060.394 940.160 1040.438 990.212 1150.432 1110.541 1130.475 1050.742 1030.727 1030.477 107
PCNN0.498 1080.559 1070.644 1050.560 1080.420 1080.711 1040.229 1170.414 1100.436 1050.352 1090.941 820.324 1060.155 1050.238 1150.387 1070.493 1040.529 1140.509 960.813 960.751 980.504 102
3DMV0.484 1090.484 1150.538 1170.643 970.424 1070.606 1170.310 1060.574 1010.433 1070.378 1040.796 1180.301 1080.214 810.537 830.208 1160.472 1090.507 1170.413 1150.693 1080.602 1170.539 94
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1100.577 1060.611 1100.356 1210.321 1170.715 1030.299 1100.376 1140.328 1170.319 1110.944 760.285 1100.164 1020.216 1180.229 1130.484 1060.545 1120.456 1080.755 1010.709 1060.475 108
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1110.679 890.604 1130.578 1070.380 1100.682 1070.291 1110.106 1210.483 940.258 1190.920 1030.258 1140.025 1180.231 1170.325 1090.480 1070.560 1100.463 1070.725 1050.666 1120.231 121
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1120.474 1160.623 1080.463 1150.366 1120.651 1100.310 1060.389 1130.349 1150.330 1100.937 870.271 1120.126 1100.285 1110.224 1140.350 1170.577 1070.445 1110.625 1130.723 1040.394 113
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1130.548 1100.548 1160.597 1050.363 1130.628 1150.300 1080.292 1160.374 1120.307 1120.881 1130.268 1130.186 940.238 1150.204 1170.407 1130.506 1180.449 1090.667 1110.620 1160.462 111
SurfaceConvPF0.442 1130.505 1120.622 1090.380 1200.342 1150.654 1090.227 1180.397 1120.367 1130.276 1150.924 1000.240 1160.198 900.359 1070.262 1110.366 1140.581 1060.435 1130.640 1120.668 1110.398 112
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1150.437 1180.646 1040.474 1140.369 1110.645 1110.353 1020.258 1180.282 1200.279 1140.918 1050.298 1090.147 1090.283 1120.294 1100.487 1050.562 1090.427 1140.619 1140.633 1150.352 116
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1160.525 1110.647 1030.522 1090.324 1160.488 1210.077 1220.712 790.353 1140.401 1020.636 1220.281 1110.176 970.340 1080.565 910.175 1210.551 1110.398 1160.370 1220.602 1170.361 115
SPLAT Netcopyleft0.393 1170.472 1170.511 1180.606 1020.311 1180.656 1080.245 1160.405 1110.328 1170.197 1200.927 990.227 1180.000 1220.001 1230.249 1120.271 1200.510 1150.383 1180.593 1160.699 1080.267 119
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1180.297 1200.491 1190.432 1180.358 1140.612 1160.274 1130.116 1200.411 1090.265 1160.904 1090.229 1170.079 1150.250 1130.185 1180.320 1180.510 1150.385 1170.548 1170.597 1200.394 113
PointNet++permissive0.339 1190.584 1050.478 1200.458 1160.256 1200.360 1220.250 1140.247 1190.278 1210.261 1180.677 1210.183 1190.117 1110.212 1190.145 1200.364 1150.346 1220.232 1220.548 1170.523 1210.252 120
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1200.114 1220.589 1150.499 1110.147 1220.555 1180.290 1120.336 1150.290 1190.262 1170.865 1160.102 1220.000 1220.037 1210.000 1230.000 1230.462 1190.381 1190.389 1210.664 1140.473 109
SSC-UNetpermissive0.308 1210.353 1190.290 1220.278 1220.166 1210.553 1190.169 1210.286 1170.147 1220.148 1220.908 1070.182 1200.064 1160.023 1220.018 1220.354 1160.363 1200.345 1200.546 1190.685 1090.278 118
ScanNetpermissive0.306 1220.203 1210.366 1210.501 1100.311 1180.524 1200.211 1200.002 1230.342 1160.189 1210.786 1190.145 1210.102 1120.245 1140.152 1190.318 1190.348 1210.300 1210.460 1200.437 1220.182 122
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1230.000 1230.041 1230.172 1230.030 1230.062 1230.001 1230.035 1220.004 1230.051 1230.143 1230.019 1230.003 1210.041 1200.050 1210.003 1220.054 1230.018 1230.005 1230.264 1230.082 123


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointComp0.629 10.787 250.679 100.574 50.502 30.824 10.378 10.480 390.483 30.480 160.601 10.744 10.682 80.809 80.460 210.819 10.643 20.935 130.449 3
PointRel0.622 20.926 80.710 30.541 110.502 20.772 80.314 50.598 110.425 100.504 110.565 30.650 80.716 20.809 70.476 120.747 60.618 30.963 40.364 21
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
Competitor-MAFT0.618 30.866 160.724 10.628 10.484 50.803 30.300 90.509 320.496 10.539 10.547 70.703 20.668 90.708 340.463 180.708 180.595 50.959 60.418 9
SIM3D0.617 40.952 40.629 190.539 120.426 170.768 120.302 80.681 20.425 110.473 180.511 170.701 30.717 10.821 60.467 150.774 20.559 160.914 200.448 4
Spherical Mask(CtoF)0.616 50.946 50.654 140.555 70.434 140.769 110.271 140.604 80.447 60.505 90.549 40.698 40.716 20.775 170.480 90.747 70.575 120.925 150.436 6
EV3D0.615 60.946 50.652 150.555 70.433 150.773 70.271 150.604 80.447 60.506 80.544 80.698 40.716 20.775 170.480 90.747 70.572 140.925 150.435 7
DCD0.614 70.892 130.633 180.434 300.495 40.810 20.292 100.501 330.408 120.525 50.582 20.688 60.625 110.801 90.608 10.672 220.649 10.965 30.476 1
ExtMask3D0.598 80.852 170.692 80.433 330.461 90.791 50.264 160.488 360.493 20.508 70.528 160.594 140.706 60.791 110.483 70.734 110.595 60.911 220.437 5
MAFT0.596 90.889 140.721 20.448 250.460 100.768 130.251 180.558 210.408 130.504 100.539 100.616 120.618 130.858 30.482 80.684 210.551 190.931 140.450 2
UniPerception0.588 100.963 30.667 120.493 160.472 80.750 170.229 210.528 270.468 50.498 140.542 90.643 90.530 230.661 410.463 170.695 200.599 40.972 10.420 8
MG-Former0.587 110.852 170.639 170.454 240.393 230.758 160.338 30.572 160.480 40.527 30.491 240.671 70.527 240.867 10.485 60.601 330.590 90.938 120.390 13
InsSSM0.586 121.000 10.593 230.440 280.480 60.771 90.345 20.437 420.444 90.495 150.548 60.579 180.621 120.720 300.409 250.712 130.593 70.960 50.395 11
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Queryformer0.583 130.926 80.702 50.393 390.504 10.733 230.276 130.527 280.373 190.479 170.534 120.533 250.697 70.720 310.436 230.745 90.592 80.958 70.363 22
KmaxOneFormerNetpermissive0.581 140.745 300.692 90.551 90.458 110.798 40.264 170.531 260.369 210.513 60.531 150.632 100.494 270.798 100.567 30.648 260.558 180.950 90.362 24
Competitor-SPFormer0.580 150.721 370.705 40.593 40.444 130.786 60.286 110.564 190.376 180.498 130.534 130.546 230.390 470.785 130.577 20.708 170.579 110.954 80.388 14
VDG-Uni3DSeg0.576 160.833 210.699 60.483 180.412 210.767 140.313 60.461 410.446 80.526 40.498 220.584 150.551 190.743 260.464 160.766 30.538 230.919 180.363 23
PBNetpermissive0.573 170.926 80.575 290.619 20.472 70.736 210.239 200.487 370.383 170.459 210.506 200.533 240.585 150.767 190.404 260.717 120.559 170.969 20.381 17
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
TST3D0.569 180.778 270.675 110.598 30.451 120.727 240.280 120.476 400.395 140.472 190.457 300.583 160.580 170.777 140.462 200.735 100.547 210.919 190.333 30
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
Mask3D0.566 190.926 80.597 220.408 360.420 190.737 200.239 190.598 110.386 160.458 220.549 40.568 210.716 20.601 470.480 90.646 270.575 120.922 170.364 20
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
OneFormer3Dcopyleft0.566 190.781 260.697 70.562 60.431 160.770 100.331 40.400 480.373 200.529 20.504 210.568 200.475 310.732 280.470 130.762 40.550 200.871 370.379 18
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
ISBNetpermissive0.559 210.939 70.655 130.383 420.426 180.763 150.180 230.534 250.386 150.499 120.509 190.621 110.427 410.704 360.467 140.649 250.571 150.948 100.401 10
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.552 221.000 10.611 210.438 290.392 240.714 250.139 270.598 130.327 250.389 250.510 180.598 130.427 420.754 220.463 190.761 50.588 100.903 250.329 32
SPFormerpermissive0.549 230.745 300.640 160.484 170.395 220.739 190.311 70.566 180.335 230.468 200.492 230.555 220.478 300.747 240.436 220.712 140.540 220.893 290.343 29
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
DKNet0.532 240.815 220.624 200.517 130.377 260.749 180.107 290.509 310.304 270.437 230.475 250.581 170.539 210.775 160.339 320.640 290.506 260.901 260.385 16
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
IPCA-Inst0.520 250.889 140.551 330.548 100.418 200.665 350.064 380.585 140.260 350.277 400.471 270.500 260.644 100.785 120.369 280.591 370.511 240.878 340.362 25
SoftGroup++0.513 260.704 390.578 280.398 380.363 320.704 260.061 390.647 50.297 320.378 280.537 110.343 300.614 140.828 50.295 370.710 160.505 280.875 360.394 12
SSTNetpermissive0.506 270.738 340.549 340.497 150.316 380.693 290.178 240.377 520.198 410.330 310.463 290.576 190.515 250.857 40.494 40.637 300.457 320.943 110.290 41
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
SoftGrouppermissive0.504 280.667 460.579 260.372 440.381 250.694 280.072 350.677 30.303 280.387 260.531 140.319 340.582 160.754 210.318 330.643 280.492 290.907 240.388 15
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
DANCENET0.504 280.926 80.579 250.472 200.367 290.626 450.165 250.432 430.221 370.408 240.449 320.411 280.564 180.746 250.421 240.707 190.438 350.846 450.288 42
TD3Dpermissive0.489 300.852 170.511 430.434 310.322 370.735 220.101 320.512 300.355 220.349 300.468 280.283 380.514 260.676 400.268 420.671 230.510 250.908 230.329 33
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
OccuSeg+instance0.486 310.802 240.536 360.428 340.369 280.702 270.205 220.331 570.301 290.379 270.474 260.327 310.437 360.862 20.485 50.601 340.394 430.846 470.273 45
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
TopoSeg0.479 320.704 390.564 300.467 220.366 300.633 430.068 360.554 220.262 340.328 320.447 330.323 320.534 220.722 290.288 390.614 310.482 300.912 210.358 27
DualGroup0.469 330.815 220.552 320.398 370.374 270.683 310.130 280.539 240.310 260.327 330.407 360.276 390.447 350.535 510.342 310.659 240.455 330.900 280.301 37
SSEC0.465 340.667 460.578 270.502 140.362 330.641 420.035 480.605 70.291 330.323 340.451 310.296 360.417 450.677 390.245 460.501 550.506 270.900 270.366 19
ODIN - Inspermissive0.463 350.738 340.589 240.344 480.358 340.560 540.139 260.393 510.331 240.373 290.392 390.496 270.493 280.709 330.377 270.599 350.359 490.752 570.332 31
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
HAISpermissive0.457 360.704 390.561 310.457 230.364 310.673 320.046 470.547 230.194 420.308 350.426 340.288 370.454 340.711 320.262 430.563 450.434 370.889 310.344 28
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DD-UNet+Group0.436 370.630 540.508 460.480 190.310 400.624 470.065 370.638 60.174 430.256 440.384 410.194 510.428 390.759 200.289 380.574 420.400 410.849 440.291 40
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.435 380.716 380.495 480.355 460.331 350.689 300.102 310.394 500.208 400.280 380.395 380.250 420.544 200.741 270.309 350.536 510.391 440.842 500.258 49
Mask-Group0.434 390.778 270.516 410.471 210.330 360.658 360.029 500.526 290.249 360.256 430.400 370.309 350.384 500.296 670.368 290.575 410.425 380.877 350.362 26
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Box2Mask0.433 400.741 320.463 530.433 320.283 430.625 460.103 300.298 620.125 520.260 420.424 350.322 330.472 320.701 370.363 300.711 150.309 610.882 320.272 47
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
RPGN0.428 410.630 540.508 450.367 450.249 500.658 370.016 580.673 40.131 500.234 470.383 420.270 400.434 370.748 230.274 410.609 320.406 400.842 490.267 48
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
DENet0.413 420.741 320.520 380.237 580.284 420.523 570.097 330.691 10.138 470.209 570.229 590.238 450.390 480.707 350.310 340.448 620.470 310.892 300.310 35
PointGroup0.407 430.639 530.496 470.415 350.243 520.645 410.021 550.570 170.114 530.211 550.359 440.217 490.428 400.660 420.256 440.562 460.341 530.860 400.291 39
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
CSC-Pretrained0.405 440.738 340.465 520.331 510.205 560.655 380.051 430.601 100.092 570.211 560.329 470.198 500.459 330.775 150.195 530.524 530.400 420.878 330.184 58
PE0.396 450.667 460.467 510.446 270.243 510.624 480.022 540.577 150.106 540.219 500.340 450.239 440.487 290.475 580.225 480.541 500.350 510.818 520.273 46
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Dyco3Dcopyleft0.395 460.642 520.518 400.447 260.259 490.666 340.050 440.251 670.166 440.231 480.362 430.232 460.331 530.535 500.229 470.587 380.438 360.850 420.317 34
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OSIS0.392 470.778 270.530 370.220 600.278 440.567 530.083 340.330 580.299 300.270 410.310 500.143 570.260 570.624 450.277 400.568 440.361 480.865 390.301 36
AOIA0.387 480.704 390.515 420.385 410.225 550.669 330.005 650.482 380.126 510.181 600.269 560.221 480.426 430.478 570.218 490.592 360.371 460.851 410.242 51
SSEN0.384 490.852 170.494 490.192 610.226 540.648 400.022 530.398 490.299 310.277 390.317 490.231 470.194 640.514 540.196 510.586 390.444 340.843 480.184 57
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
Mask3D_evaluation0.382 500.593 560.520 390.390 400.314 390.600 490.018 570.287 650.151 460.281 370.387 400.169 550.429 380.654 430.172 570.578 400.384 450.670 640.278 44
PCJC0.375 510.704 390.542 350.284 550.197 580.649 390.006 620.426 440.138 480.242 450.304 510.183 540.388 490.629 440.141 640.546 490.344 520.738 590.283 43
ClickSeg_Instance0.366 520.654 500.375 570.184 620.302 410.592 510.050 450.300 610.093 560.283 360.277 530.249 430.426 440.615 460.299 360.504 540.367 470.832 510.191 56
SphereSeg0.357 530.651 510.411 550.345 470.264 480.630 440.059 400.289 640.212 380.240 460.336 460.158 560.305 540.557 480.159 600.455 610.341 540.726 610.294 38
3D-MPA0.355 540.457 660.484 500.299 530.277 450.591 520.047 460.332 550.212 390.217 510.278 520.193 520.413 460.410 610.195 520.574 430.352 500.849 430.213 54
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
NeuralBF0.353 550.593 560.511 440.375 430.264 470.597 500.008 600.332 560.160 450.229 490.274 550.000 780.206 610.678 380.155 610.485 570.422 390.816 530.254 50
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
RWSeg0.348 560.475 630.456 540.320 520.275 460.476 590.020 560.491 350.056 640.212 540.320 480.261 410.302 550.520 520.182 550.557 470.285 630.867 380.197 55
GICN0.341 570.580 580.371 580.344 490.198 570.469 600.052 420.564 200.093 550.212 530.212 610.127 590.347 520.537 490.206 500.525 520.329 560.729 600.241 52
One_Thing_One_Clickpermissive0.326 580.472 640.361 590.232 590.183 590.555 550.000 710.498 340.038 660.195 580.226 600.362 290.168 650.469 590.251 450.553 480.335 550.846 460.117 66
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Occipital-SCS0.320 590.679 450.352 600.334 500.229 530.436 610.025 510.412 470.058 620.161 650.240 580.085 610.262 560.496 560.187 540.467 590.328 570.775 540.231 53
Sparse R-CNN0.292 600.704 390.213 700.153 640.154 610.551 560.053 410.212 680.132 490.174 620.274 540.070 630.363 510.441 600.176 560.424 640.234 650.758 560.161 62
MTML0.282 610.577 590.380 560.182 630.107 670.430 620.001 680.422 450.057 630.179 610.162 640.070 640.229 590.511 550.161 580.491 560.313 580.650 670.162 60
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SALoss-ResNet0.262 620.667 460.335 610.067 710.123 650.427 630.022 520.280 660.058 610.216 520.211 620.039 670.142 670.519 530.106 680.338 680.310 600.721 620.138 63
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.254 630.463 650.249 690.113 650.167 600.412 650.000 700.374 530.073 580.173 630.243 570.130 580.228 600.368 630.160 590.356 660.208 660.711 630.136 64
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
3D-BoNet0.253 640.519 610.324 640.251 570.137 640.345 700.031 490.419 460.069 590.162 640.131 660.052 650.202 630.338 650.147 630.301 710.303 620.651 660.178 59
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SPG_WSIS0.251 650.380 680.274 670.289 540.144 620.413 640.000 710.311 590.065 600.113 670.130 670.029 700.204 620.388 620.108 670.459 600.311 590.769 550.127 65
SegGroup_inspermissive0.246 660.556 600.335 620.062 730.115 660.490 580.000 710.297 630.018 700.186 590.142 650.083 620.233 580.216 690.153 620.469 580.251 640.744 580.083 69
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PanopticFusion-inst0.214 670.250 730.330 630.275 560.103 680.228 760.000 710.345 540.024 680.088 690.203 630.186 530.167 660.367 640.125 650.221 740.112 760.666 650.162 61
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
UNet-backbone0.161 680.519 610.259 680.084 670.059 700.325 720.002 660.093 730.009 720.077 710.064 700.045 660.044 740.161 710.045 700.331 690.180 680.566 680.033 78
3D-SISpermissive0.161 680.407 670.155 750.068 700.043 740.346 690.001 670.134 700.005 730.088 680.106 690.037 680.135 690.321 660.028 740.339 670.116 750.466 710.093 68
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 700.356 690.173 730.113 660.140 630.359 660.012 590.023 760.039 650.134 660.123 680.008 740.089 700.149 720.117 660.221 730.128 730.563 690.094 67
Region-18class0.146 710.175 770.321 650.080 680.062 690.357 670.000 710.307 600.002 750.066 720.044 720.000 780.018 760.036 770.054 690.447 630.133 710.472 700.060 73
SemRegionNet-20cls0.121 720.296 710.203 710.071 690.058 710.349 680.000 710.150 690.019 690.054 740.034 750.017 730.052 720.042 760.013 770.209 750.183 670.371 720.057 74
3D-BEVIS0.117 730.250 730.308 660.020 770.009 790.269 750.006 630.008 770.029 670.037 770.014 780.003 760.036 750.147 730.042 720.381 650.118 740.362 730.069 72
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Hier3Dcopyleft0.117 730.222 750.161 740.054 750.027 760.289 730.000 710.124 710.001 770.079 700.061 710.027 710.141 680.240 680.005 780.310 700.129 720.153 780.081 70
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
tmp0.113 750.333 700.151 760.056 740.053 720.344 710.000 710.105 720.016 710.049 750.035 740.020 720.053 710.048 750.013 760.183 770.173 690.344 750.054 75
Sem_Recon_ins0.098 760.295 720.187 720.015 780.036 750.213 770.005 640.038 750.003 740.056 730.037 730.036 690.015 770.051 740.044 710.209 760.098 770.354 740.071 71
ASIS0.085 770.037 780.080 780.066 720.047 730.282 740.000 710.052 740.002 760.047 760.026 760.001 770.046 730.194 700.031 730.264 720.140 700.167 770.047 77
Sgpn_scannet0.049 780.023 790.134 770.031 760.013 780.144 780.006 610.008 780.000 780.028 780.017 770.003 750.009 790.000 780.021 750.122 780.095 780.175 760.054 76
MaskRCNN 2d->3d Proj0.022 790.185 760.000 790.000 790.015 770.000 790.000 690.006 790.000 780.010 790.006 790.107 600.012 780.000 780.002 790.027 790.004 790.022 790.001 79


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 190.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 150.769 50.656 30.567 40.931 30.395 60.390 60.700 40.534 40.689 110.770 20.574 30.865 110.831 30.675 6
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 160.794 40.434 170.688 10.337 80.464 140.798 40.632 50.589 30.908 90.420 20.329 140.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 250.648 40.463 30.549 20.742 90.676 20.628 20.961 10.420 20.379 70.684 80.381 200.732 30.723 30.599 20.827 180.851 20.634 9
DVEFormer0.626 50.616 120.764 60.690 50.583 110.322 140.540 30.809 30.593 70.502 120.900 140.374 90.433 30.660 90.528 50.665 190.663 60.491 90.871 100.810 90.705 4
CMX0.613 60.681 90.725 130.502 130.634 60.297 190.478 120.830 20.651 40.537 70.924 40.375 70.315 160.686 70.451 150.714 50.543 230.504 60.894 70.823 50.688 5
DMMF_3d0.605 70.651 100.744 110.782 30.637 50.387 40.536 50.732 100.590 80.540 60.856 230.359 120.306 170.596 160.539 30.627 220.706 40.497 80.785 230.757 210.476 24
EMSANet0.600 80.716 40.746 100.395 200.614 90.382 50.523 60.713 130.571 120.503 100.922 70.404 50.397 50.655 100.400 170.626 230.663 60.469 140.900 40.827 40.577 16
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 90.533 220.756 90.746 40.590 100.334 100.506 90.670 170.587 90.500 130.905 110.366 110.352 100.601 150.506 90.669 170.648 100.501 70.839 170.769 170.516 23
RFBNet0.592 100.616 120.758 80.659 60.581 120.330 110.469 130.655 200.543 150.524 80.924 40.355 140.336 120.572 190.479 110.671 150.648 100.480 110.814 210.814 70.614 12
FAN_NV_RVC0.586 110.510 230.764 60.079 280.620 80.330 110.494 100.753 70.573 100.556 50.884 180.405 40.303 180.718 30.452 140.672 140.658 80.509 50.898 50.813 80.727 2
WSGFormer0.585 120.706 50.708 180.434 170.574 140.283 220.538 40.759 60.542 170.482 170.924 40.351 160.333 130.614 120.393 180.692 100.551 220.461 150.874 90.809 100.673 7
DCRedNet0.583 130.682 80.723 140.542 120.510 220.310 160.451 150.668 180.549 140.520 90.920 80.375 70.446 20.528 220.417 160.670 160.577 190.478 120.862 120.806 110.628 11
MIX6D_RVC0.582 140.695 60.687 190.225 230.632 70.328 130.550 10.748 80.623 60.494 160.890 160.350 170.254 250.688 60.454 130.716 40.597 180.489 100.881 80.768 180.575 17
SSMAcopyleft0.577 150.695 60.716 160.439 150.563 160.314 150.444 170.719 110.551 130.503 100.887 170.346 180.348 110.603 140.353 220.709 60.600 160.457 160.901 30.786 130.599 15
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 160.623 110.767 50.238 220.571 150.347 60.413 210.719 110.472 220.418 240.895 150.357 130.260 240.696 50.523 80.666 180.642 120.437 200.895 60.793 120.603 14
UNIV_CNP_RVC_UE0.566 170.569 210.686 210.435 160.524 190.294 200.421 200.712 140.543 150.463 190.872 190.320 190.363 90.611 130.477 120.686 120.627 130.443 190.862 120.775 160.639 8
EMSAFormer0.564 180.581 180.736 120.564 110.546 180.219 250.517 70.675 160.486 210.427 230.904 120.352 150.320 150.589 170.528 50.708 70.464 260.413 240.847 160.786 130.611 13
SN_RN152pyrx8_RVCcopyleft0.546 190.572 190.663 230.638 80.518 200.298 180.366 260.633 230.510 190.446 210.864 210.296 220.267 210.542 210.346 230.704 80.575 200.431 210.853 150.766 190.630 10
UDSSEG_RVC0.545 200.610 150.661 240.588 90.556 170.268 230.482 110.642 220.572 110.475 180.836 250.312 200.367 80.630 110.189 250.639 210.495 250.452 170.826 190.756 220.541 19
segfomer with 6d0.542 210.594 170.687 190.146 260.579 130.308 170.515 80.703 150.472 220.498 140.868 200.369 100.282 190.589 170.390 190.701 90.556 210.416 230.860 140.759 200.539 21
FuseNetpermissive0.535 220.570 200.681 220.182 240.512 210.290 210.431 180.659 190.504 200.495 150.903 130.308 210.428 40.523 230.365 210.676 130.621 150.470 130.762 240.779 150.541 19
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 230.613 140.722 150.418 190.358 280.337 80.370 250.479 260.443 240.368 260.907 100.207 250.213 270.464 260.525 70.618 240.657 90.450 180.788 220.721 250.408 27
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 240.481 260.612 250.579 100.456 240.343 70.384 230.623 240.525 180.381 250.845 240.254 240.264 230.557 200.182 260.581 260.598 170.429 220.760 250.661 270.446 26
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 250.505 240.709 170.092 270.427 250.241 240.411 220.654 210.385 280.457 200.861 220.053 280.279 200.503 240.481 100.645 200.626 140.365 260.748 260.725 240.529 22
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 260.490 250.581 260.289 210.507 230.067 280.379 240.610 250.417 260.435 220.822 270.278 230.267 210.503 240.228 240.616 250.533 240.375 250.820 200.729 230.560 18
Enet (reimpl)0.376 270.264 280.452 280.452 140.365 260.181 260.143 280.456 270.409 270.346 270.769 280.164 260.218 260.359 270.123 280.403 280.381 280.313 280.571 270.685 260.472 25
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 280.293 270.521 270.657 70.361 270.161 270.250 270.004 280.440 250.183 280.836 250.125 270.060 280.319 280.132 270.417 270.412 270.344 270.541 280.427 280.109 28
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3