Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DITR0.409 20.616 10.351 10.215 30.831 30.791 10.947 50.619 10.730 20.762 20.494 20.571 10.597 20.000 120.853 10.625 30.796 20.301 30.723 30.959 40.617 20.862 70.917 30.573 10.562 100.591 10.784 70.504 50.757 10.737 20.429 40.853 10.662 30.135 30.459 30.558 110.000 10.913 10.878 60.687 150.008 150.000 70.615 40.238 10.651 10.370 30.742 20.925 20.360 10.167 40.938 10.752 20.118 30.827 10.670 40.723 20.614 30.628 140.372 10.000 30.143 120.175 160.873 30.652 10.991 10.340 10.148 80.814 10.656 10.524 60.491 40.000 10.743 10.752 40.000 40.000 90.000 10.399 10.865 20.953 10.833 10.694 20.444 60.000 160.688 60.609 20.000 30.053 20.000 10.022 110.000 30.053 110.940 30.000 10.186 10.093 50.854 20.877 10.534 20.404 10.270 30.191 80.198 40.461 70.375 10.152 30.921 10.132 90.235 120.000 30.617 10.330 10.896 10.399 50.431 50.597 80.759 10.554 30.400 20.000 10.559 100.699 10.852 20.000 10.000 100.091 100.385 10.000 70.000 80.478 40.077 90.000 70.140 40.000 10.000 40.670 130.000 10.452 40.000 10.263 50.361 110.000 10.643 40.000 10.000 10.357 50.005 110.928 20.362 10.496 10.000 10.000 70.000 10.072 150.585 20.587 30.476 40.037 130.191 50.410 120.629 40.118 10.000 10.479 110.000 20.000 20.107 70.839 30.000 20.000 10.000 10.139 100.036 60.000 30.247 90.000 1
ALS-MinkowskiNetcopyleft0.414 10.610 20.322 30.271 10.852 10.710 20.973 10.572 30.719 30.795 10.477 50.506 20.601 10.000 120.804 50.646 20.804 10.344 20.777 10.984 10.671 10.879 20.936 10.342 40.632 70.449 30.817 30.475 90.723 20.798 10.376 80.832 20.693 10.031 90.564 10.510 130.000 10.893 20.905 10.672 160.314 10.000 70.718 10.153 20.542 20.397 20.726 30.752 80.252 70.226 10.916 20.800 10.047 150.807 30.769 10.709 30.630 20.769 10.217 90.000 30.285 10.598 30.846 90.535 20.956 30.000 60.137 110.784 20.464 60.463 130.230 110.000 10.598 30.662 90.000 40.087 20.000 10.135 20.900 10.780 110.703 20.741 10.571 20.149 90.697 50.646 10.000 30.076 10.000 10.025 90.000 30.106 40.981 10.000 10.043 60.113 30.888 10.248 150.404 40.252 50.314 10.220 50.245 10.466 60.366 20.159 20.000 40.149 70.690 20.000 30.531 50.253 20.285 50.460 10.440 40.813 10.230 20.283 50.159 100.000 10.728 10.666 50.958 10.000 10.021 40.252 60.118 40.000 70.445 30.223 100.285 10.194 30.390 20.000 10.475 30.842 70.000 10.455 30.000 10.250 70.458 70.000 10.865 10.000 10.000 10.635 10.359 40.972 10.087 30.447 20.000 10.000 70.000 10.129 20.532 60.446 70.503 30.071 110.135 120.699 30.717 10.097 20.000 10.665 10.000 20.000 21.000 10.752 50.000 20.000 10.000 10.142 80.200 10.259 11.000 10.000 1
PTv3 ScanNet2000.393 30.592 30.330 20.216 20.851 20.687 60.971 20.586 20.755 10.752 70.505 10.404 60.575 40.000 120.848 20.616 40.761 30.349 10.738 20.978 20.546 60.860 80.926 20.346 30.654 30.384 60.828 10.523 30.699 30.583 50.387 70.822 30.688 20.118 50.474 20.603 40.000 10.832 70.903 20.753 80.140 90.000 70.650 30.109 40.520 30.457 10.497 90.871 40.281 30.192 30.887 40.748 30.168 10.727 70.733 20.740 10.644 10.714 40.190 120.000 30.256 30.449 90.914 10.514 30.759 140.337 20.172 60.692 60.617 20.636 10.325 70.000 10.641 20.782 10.000 40.065 30.000 10.000 50.842 30.903 20.661 40.662 40.612 10.405 20.731 30.566 30.000 30.000 70.000 10.017 140.301 10.088 50.941 20.000 10.077 30.000 100.717 70.790 20.310 110.026 160.264 40.349 10.220 30.397 120.366 20.115 120.000 40.337 10.463 60.000 30.531 50.218 30.593 20.455 20.469 10.708 30.210 30.592 20.108 150.000 10.728 10.682 30.671 80.000 10.000 100.407 10.136 30.022 30.575 10.436 50.259 30.428 10.048 50.000 10.000 40.879 50.000 10.480 20.000 10.133 90.597 10.000 10.690 20.000 10.000 10.009 150.000 140.921 40.000 90.151 40.000 10.000 70.000 10.109 70.494 110.622 20.394 80.073 100.141 80.798 10.528 70.026 50.000 10.551 40.000 20.000 20.134 60.717 70.000 20.000 10.000 10.188 30.000 80.000 30.791 20.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.806 80.670 120.943 90.535 110.662 40.705 150.423 80.407 50.505 120.003 100.765 120.582 70.686 140.227 150.680 70.943 100.601 30.854 100.892 50.335 50.417 160.357 90.724 90.453 100.632 60.596 40.432 30.783 100.512 150.021 120.244 140.637 10.000 10.787 110.873 90.743 100.000 160.000 70.534 80.110 30.499 60.289 90.626 60.620 110.168 140.204 20.849 90.679 70.117 40.633 110.684 30.650 70.552 50.684 80.312 30.000 30.175 100.429 100.865 40.413 40.837 110.000 60.145 90.626 80.451 70.487 110.513 30.000 10.529 70.613 120.000 40.033 60.000 10.000 50.828 40.871 30.622 80.587 80.411 70.137 100.645 130.343 110.000 30.000 70.000 10.022 110.000 30.026 160.829 100.000 10.022 70.089 60.842 30.253 140.318 100.296 30.178 100.291 30.224 20.584 20.200 130.132 80.000 40.128 100.227 130.000 30.230 120.047 100.149 70.331 90.412 90.618 60.164 90.102 100.522 10.000 10.655 40.378 120.469 140.000 10.000 100.000 110.105 80.000 70.000 80.483 30.000 110.000 70.028 70.000 10.000 40.906 10.000 10.339 140.000 10.000 120.457 80.000 10.612 70.000 10.000 10.408 30.000 140.900 100.000 90.000 100.000 10.029 60.000 10.074 130.455 140.479 50.427 60.079 80.140 90.496 70.414 130.022 60.000 10.471 130.000 20.000 20.000 110.722 60.000 20.000 10.000 10.138 130.000 80.000 30.000 100.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.810 70.682 90.950 40.560 60.641 90.761 30.398 120.357 90.570 70.113 20.804 50.603 60.750 60.283 40.681 60.952 50.548 50.874 40.852 120.290 110.700 20.356 100.792 40.445 110.545 120.436 110.351 120.787 90.611 70.050 80.290 130.519 120.000 10.825 90.888 40.842 30.259 30.100 20.558 60.070 110.497 70.247 130.457 100.889 30.248 80.106 90.817 120.691 60.094 60.729 60.636 60.620 110.503 100.660 120.243 60.000 30.212 60.590 40.860 70.400 50.881 80.000 60.202 20.622 90.408 100.499 80.261 100.000 10.385 90.636 100.000 40.000 90.000 10.000 50.433 150.843 60.660 60.574 110.481 30.336 40.677 80.486 50.000 30.030 30.000 10.034 50.000 30.080 60.869 90.000 10.000 90.000 100.540 90.727 30.232 160.115 100.186 90.193 70.000 130.403 110.326 60.103 130.000 40.290 30.392 80.000 30.346 90.062 90.424 40.375 60.431 50.667 40.115 130.082 110.239 60.000 10.504 130.606 80.584 110.000 10.002 80.186 80.104 90.000 70.394 40.384 70.083 80.000 70.007 80.000 10.000 40.880 40.000 10.377 90.000 10.263 50.565 20.000 10.608 80.000 10.000 10.304 70.009 90.924 30.000 90.000 100.000 10.000 70.000 10.128 30.584 30.475 60.412 70.076 90.269 30.621 50.509 80.010 70.000 10.491 100.063 10.000 20.472 40.880 20.000 20.000 10.000 10.179 40.125 20.000 30.441 80.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.827 40.689 40.970 30.528 120.661 60.753 60.436 70.378 70.469 140.042 70.810 30.654 10.760 40.266 90.659 90.973 30.574 40.849 110.897 40.382 20.546 120.372 80.698 130.491 80.617 90.526 90.436 10.764 130.476 160.101 60.409 60.585 90.000 10.835 50.901 30.810 50.102 120.000 70.688 20.096 50.483 100.264 110.612 80.591 150.358 20.161 50.863 50.707 40.128 20.814 20.669 50.629 90.563 40.651 130.258 40.000 30.194 90.494 80.806 110.394 60.953 40.000 60.233 10.757 40.508 50.556 30.476 50.000 10.573 50.741 60.000 40.000 90.000 10.000 50.000 160.852 50.678 30.616 50.460 40.338 30.710 40.534 40.000 30.025 40.000 10.043 20.000 30.056 100.493 160.000 10.000 90.109 40.785 60.590 60.298 120.282 40.143 120.262 40.053 100.526 40.337 50.215 10.000 40.135 80.510 40.000 30.596 40.043 130.511 30.321 110.459 20.772 20.124 120.060 130.266 50.000 10.574 90.568 90.653 100.000 10.093 10.298 20.239 20.000 70.516 20.129 130.284 20.000 70.431 10.000 10.000 40.848 60.000 10.492 10.000 10.376 20.522 50.000 10.469 160.000 10.000 10.330 60.151 80.875 140.000 90.254 30.000 10.000 70.000 10.088 110.661 10.481 40.255 110.105 10.139 100.666 40.641 30.000 120.000 10.614 20.000 20.000 20.000 110.921 10.000 20.000 10.000 10.497 10.000 80.000 30.000 100.000 1
CeCo0.340 60.551 80.247 120.181 50.784 120.661 130.939 120.564 50.624 120.721 110.484 40.429 40.575 40.027 80.774 110.503 130.753 50.242 120.656 100.945 90.534 70.865 60.860 100.177 160.616 80.400 40.818 20.579 10.615 100.367 130.408 60.726 140.633 40.162 10.360 80.619 20.000 10.828 80.873 90.924 20.109 110.083 30.564 50.057 140.475 120.266 100.781 10.767 70.257 60.100 100.825 100.663 90.048 140.620 130.551 110.595 120.532 70.692 70.246 50.000 30.213 50.615 10.861 60.376 70.900 70.000 60.102 150.660 70.321 140.547 40.226 120.000 10.311 120.742 50.011 30.006 80.000 10.000 50.546 140.824 80.345 130.665 30.450 50.435 10.683 70.411 70.338 10.000 70.000 10.030 80.000 30.068 70.892 70.000 10.063 40.000 100.257 120.304 130.387 50.079 130.228 50.190 100.000 130.586 10.347 40.133 70.000 40.037 120.377 90.000 30.384 80.006 150.003 120.421 30.410 100.643 50.171 80.121 80.142 110.000 10.510 120.447 110.474 130.000 10.000 100.286 30.083 100.000 70.000 80.603 10.096 70.063 40.000 100.000 10.000 40.898 30.000 10.429 60.000 10.400 10.550 30.000 10.633 60.000 10.000 10.377 40.000 140.916 50.000 90.000 100.000 10.000 70.000 10.102 100.499 90.296 130.463 50.089 50.304 10.740 20.401 150.010 70.000 10.560 30.000 20.000 20.709 20.652 90.000 20.000 10.000 10.143 70.000 80.000 30.609 30.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.816 60.682 90.946 60.549 90.657 80.756 50.459 60.376 80.550 100.001 110.807 40.616 40.727 110.267 80.691 50.942 110.530 90.872 50.874 70.330 70.542 130.374 70.792 40.400 130.673 40.572 60.433 20.793 80.623 60.008 160.351 90.594 70.000 10.783 120.876 70.833 40.213 60.000 70.537 70.091 60.519 40.304 70.620 70.942 10.264 40.124 70.855 60.695 50.086 70.646 100.506 150.658 60.535 60.715 30.314 20.000 30.241 40.608 20.897 20.359 80.858 100.000 60.076 160.611 100.392 110.509 70.378 60.000 10.579 40.565 150.000 40.000 90.000 10.000 50.755 60.806 90.661 40.572 120.350 90.181 70.660 110.300 130.000 30.000 70.000 10.023 100.000 30.042 130.930 40.000 10.000 90.077 70.584 80.392 100.339 80.185 90.171 110.308 20.006 120.563 30.256 80.150 40.000 40.002 150.345 110.000 30.045 130.197 40.063 100.323 100.453 30.600 70.163 100.037 140.349 30.000 10.672 30.679 40.753 50.000 10.000 100.000 110.117 50.000 70.000 80.291 90.000 110.000 70.039 60.000 10.000 40.899 20.000 10.374 100.000 10.000 120.545 40.000 10.634 50.000 10.000 10.074 120.223 60.914 70.000 90.021 80.000 10.000 70.000 10.112 50.498 100.649 10.383 90.095 20.135 120.449 90.432 110.008 90.000 10.518 60.000 20.000 20.000 110.796 40.000 20.000 10.000 10.138 130.000 80.000 30.000 100.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.821 50.703 30.946 60.569 40.662 40.748 80.487 30.455 30.572 60.000 120.789 90.534 80.736 80.271 70.713 40.949 60.498 130.877 30.860 100.332 60.706 10.474 20.788 60.406 120.637 50.495 100.355 110.805 70.592 110.015 130.396 70.602 50.000 10.799 100.876 70.713 120.276 20.000 70.493 120.080 80.448 140.363 40.661 40.833 60.262 50.125 60.823 110.665 80.076 80.720 80.557 100.637 80.517 80.672 90.227 70.000 30.158 110.496 70.843 100.352 90.835 120.000 60.103 140.711 50.527 30.526 50.320 80.000 10.568 60.625 110.067 10.000 90.000 10.001 40.806 50.836 70.621 90.591 70.373 80.314 50.668 90.398 80.003 20.000 70.000 10.016 150.024 20.043 120.906 60.000 10.052 50.000 100.384 110.330 120.342 70.100 110.223 60.183 120.112 60.476 50.313 70.130 90.196 30.112 110.370 100.000 30.234 110.071 80.160 60.403 40.398 130.492 140.197 50.076 120.272 40.000 10.200 160.560 100.735 70.000 10.000 100.000 110.110 70.002 60.021 70.412 60.000 110.000 70.000 100.000 10.000 40.794 100.000 10.445 50.000 10.022 100.509 60.000 10.517 120.000 10.000 10.001 160.245 50.915 60.024 60.089 60.000 10.262 20.000 10.103 90.524 70.392 100.515 20.013 160.251 40.411 110.662 20.001 110.000 10.473 120.000 20.000 20.150 50.699 80.000 20.000 10.000 10.166 50.000 80.024 20.000 100.000 1
GSTran0.334 90.533 110.250 110.179 70.799 100.684 70.940 100.554 80.633 100.741 90.405 100.337 110.560 80.060 50.794 80.517 120.732 100.274 50.647 110.948 70.459 150.849 110.864 80.306 80.648 50.282 130.717 110.496 60.624 80.533 70.363 90.821 40.573 130.009 150.411 40.593 80.000 10.841 40.873 90.704 130.242 50.000 70.495 100.041 150.487 80.304 70.439 120.613 120.133 160.055 150.853 70.634 110.075 110.791 50.601 90.574 150.483 120.669 100.217 90.000 30.198 70.518 50.782 130.345 100.914 50.273 40.193 30.598 130.440 80.499 80.570 10.000 10.381 100.775 30.000 40.063 50.000 10.000 50.712 70.752 130.507 110.512 150.158 150.036 120.773 10.361 100.000 30.000 70.000 10.032 60.000 30.032 140.651 140.000 10.000 90.000 100.831 40.595 40.273 150.229 60.200 80.191 80.000 130.425 90.233 120.125 100.000 40.279 40.213 150.003 10.608 30.044 110.138 80.321 110.408 110.593 100.198 40.205 70.139 120.000 10.614 70.609 70.838 40.000 10.014 50.260 40.080 110.010 50.000 80.136 120.136 40.047 50.000 100.000 10.787 20.797 90.000 10.354 130.000 10.372 30.357 130.000 10.507 150.000 10.000 10.121 100.423 20.903 80.028 40.089 60.000 10.252 30.000 10.072 150.465 120.340 110.189 150.020 150.011 150.320 150.606 60.060 30.000 10.496 80.000 20.000 20.070 90.618 120.000 20.000 10.000 10.139 100.047 40.000 30.558 60.000 1
IMFSegNet0.334 80.532 120.251 100.179 60.799 100.683 80.940 100.555 70.631 110.740 100.406 90.336 120.560 80.062 40.795 70.518 110.733 90.274 50.646 120.947 80.458 160.848 130.862 90.305 90.649 40.284 120.713 120.495 70.626 70.527 80.363 90.820 50.574 120.010 140.411 40.597 60.000 10.842 30.873 90.704 130.246 40.000 70.495 100.041 150.486 90.305 60.444 110.604 140.134 150.055 150.852 80.633 120.076 80.792 40.612 80.573 160.484 110.668 110.216 110.000 30.197 80.518 50.784 120.344 110.908 60.283 30.190 40.599 120.439 90.496 100.569 20.000 10.392 80.776 20.000 40.064 40.000 10.000 50.710 80.756 120.508 100.512 150.159 140.034 130.773 10.363 90.000 30.000 70.000 10.032 60.000 30.029 150.648 150.000 10.000 90.000 100.830 50.595 40.274 140.228 70.206 70.188 110.000 130.425 90.237 110.123 110.000 40.277 50.214 140.003 10.610 20.044 110.124 90.320 130.408 110.594 90.196 60.213 60.139 120.000 10.615 60.618 60.839 30.000 10.014 50.260 40.080 110.025 20.000 80.139 110.135 50.035 60.000 100.000 10.793 10.799 80.000 10.357 120.000 10.369 40.359 120.000 10.512 140.000 10.000 10.120 110.424 10.903 80.027 50.091 50.000 10.245 40.000 10.073 140.457 130.340 110.191 140.021 140.009 160.322 140.608 50.060 30.000 10.494 90.000 20.000 20.068 100.624 100.000 20.000 10.000 10.139 100.047 40.000 30.561 50.000 1
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.801 90.689 40.946 60.539 100.660 70.759 40.380 130.333 130.583 30.000 120.788 100.529 90.740 70.261 110.679 80.940 120.525 100.860 80.883 60.226 120.613 90.397 50.720 100.512 40.565 110.620 30.417 50.775 120.629 50.158 20.298 110.579 100.000 10.835 50.883 50.927 10.114 100.079 40.511 90.073 100.508 50.312 50.629 50.861 50.192 130.098 120.908 30.636 100.032 160.563 160.514 140.664 50.505 90.697 60.225 80.000 30.264 20.411 110.860 70.321 120.960 20.058 50.109 130.776 30.526 40.557 20.303 90.000 10.339 110.712 70.000 40.014 70.000 10.000 50.638 110.856 40.641 70.579 100.107 160.119 110.661 100.416 60.000 30.000 70.000 10.007 160.000 30.067 80.910 50.000 10.000 90.000 100.463 100.448 80.294 130.324 20.293 20.211 60.108 70.448 80.068 160.141 60.000 40.330 20.699 10.000 30.256 100.192 50.000 140.355 70.418 70.209 160.146 110.679 10.101 160.000 10.503 140.687 20.671 80.000 10.000 100.174 90.117 50.000 70.122 60.515 20.104 60.259 20.312 30.000 10.000 40.765 110.000 10.369 110.000 10.183 80.422 100.000 10.646 30.000 10.000 10.565 20.001 130.125 160.010 70.002 90.000 10.487 10.000 10.075 120.548 40.420 80.233 130.082 70.138 110.430 100.427 120.000 120.000 10.549 50.000 20.000 20.074 80.409 150.000 20.000 10.000 10.152 60.051 30.000 30.598 40.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
AWCS0.305 130.508 130.225 130.142 100.782 130.634 160.937 130.489 140.578 130.721 110.364 140.355 100.515 110.023 90.764 130.523 100.707 130.264 100.633 130.922 130.507 120.886 10.804 140.179 140.436 150.300 110.656 150.529 20.501 140.394 120.296 150.820 50.603 80.131 40.179 160.619 20.000 10.707 150.865 130.773 60.171 70.010 60.484 130.063 120.463 130.254 120.332 150.649 100.220 100.100 100.729 140.613 140.071 120.582 140.628 70.702 40.424 140.749 20.137 140.000 30.142 130.360 120.863 50.305 130.877 90.000 60.173 50.606 110.337 130.478 120.154 140.000 10.253 130.664 80.000 40.000 90.000 10.000 50.626 120.782 100.302 150.602 60.185 120.282 60.651 120.317 120.000 30.000 70.000 10.022 110.000 30.154 10.876 80.000 10.014 80.063 90.029 160.553 70.467 30.084 120.124 130.157 150.049 110.373 130.252 90.097 140.000 40.219 60.542 30.000 30.392 70.172 70.000 140.339 80.417 80.533 130.093 140.115 90.195 80.000 10.516 110.288 150.741 60.000 10.001 90.233 70.056 130.000 70.159 50.334 80.077 90.000 70.000 100.000 10.000 40.749 120.000 10.411 70.000 10.008 110.452 90.000 10.595 90.000 10.000 10.220 90.006 100.894 120.006 80.000 100.000 10.000 70.000 10.112 50.504 80.404 90.551 10.093 40.129 140.484 80.381 160.000 120.000 10.396 140.000 20.000 20.620 30.402 160.000 20.000 10.000 10.142 80.000 80.000 30.512 70.000 1
LGroundpermissive0.272 140.485 140.184 140.106 140.778 140.676 110.932 140.479 160.572 140.718 130.399 110.265 140.453 150.085 30.745 140.446 140.726 120.232 140.622 140.901 140.512 110.826 140.786 150.178 150.549 110.277 140.659 140.381 140.518 130.295 160.323 130.777 110.599 90.028 100.321 100.363 150.000 10.708 140.858 140.746 90.063 130.022 50.457 140.077 90.476 110.243 140.402 130.397 160.233 90.077 140.720 160.610 150.103 50.629 120.437 160.626 100.446 130.702 50.190 120.005 10.058 150.322 130.702 150.244 140.768 130.000 60.134 120.552 140.279 150.395 140.147 150.000 10.207 140.612 130.000 40.000 90.000 10.000 50.658 100.566 140.323 140.525 140.229 110.179 80.467 160.154 150.000 30.002 50.000 10.051 10.000 30.127 20.703 110.000 10.000 90.216 10.112 150.358 110.547 10.187 80.092 150.156 160.055 90.296 140.252 90.143 50.000 40.014 130.398 70.000 30.028 150.173 60.000 140.265 150.348 140.415 150.179 70.019 150.218 70.000 10.597 80.274 160.565 120.000 10.012 70.000 110.039 150.022 30.000 80.117 140.000 110.000 70.000 100.000 10.000 40.324 150.000 10.384 80.000 10.000 120.251 160.000 10.566 100.000 10.000 10.066 130.404 30.886 130.199 20.000 100.000 10.059 50.000 10.136 10.540 50.127 160.295 100.085 60.143 70.514 60.413 140.000 120.000 10.498 70.000 20.000 20.000 110.623 110.000 20.000 10.000 10.132 150.000 80.000 30.000 100.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.766 160.659 140.930 160.494 130.542 160.700 160.314 160.215 160.430 160.121 10.697 160.441 150.683 150.235 130.609 160.895 150.476 140.816 150.770 160.186 130.634 60.216 160.734 80.340 150.471 150.307 150.293 160.591 160.542 140.076 70.205 150.464 140.000 10.484 160.832 160.766 70.052 140.000 70.413 150.059 130.418 150.222 150.318 160.609 130.206 120.112 80.743 130.625 130.076 80.579 150.548 120.590 130.371 150.552 160.081 150.003 20.142 130.201 150.638 160.233 150.686 160.000 60.142 100.444 160.375 120.247 160.198 130.000 10.128 160.454 160.019 20.097 10.000 10.000 50.553 130.557 150.373 120.545 130.164 130.014 150.547 150.174 140.000 30.002 50.000 10.037 30.000 30.063 90.664 130.000 10.000 90.130 20.170 130.152 160.335 90.079 130.110 140.175 130.098 80.175 160.166 140.045 160.207 20.014 130.465 50.000 30.001 160.001 160.046 110.299 140.327 150.537 120.033 150.012 160.186 90.000 10.205 150.377 130.463 150.000 10.058 30.000 110.055 140.041 10.000 80.105 150.000 110.000 70.000 100.000 10.000 40.398 140.000 10.308 160.000 10.000 120.319 140.000 10.543 110.000 10.000 10.062 140.004 120.862 150.000 90.000 100.000 10.000 70.000 10.123 40.316 150.225 140.250 120.094 30.180 60.332 130.441 100.000 120.000 10.310 160.000 20.000 20.000 110.592 130.000 20.000 10.000 10.203 20.000 80.000 30.000 100.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.771 150.650 150.932 140.483 150.571 150.710 140.331 150.250 150.492 130.044 60.703 150.419 160.606 160.227 150.621 150.865 160.531 80.771 160.813 130.291 100.484 140.242 150.612 160.282 160.440 160.351 140.299 140.622 150.593 100.027 110.293 120.310 160.000 10.757 130.858 140.737 110.150 80.164 10.368 160.084 70.381 160.142 160.357 140.720 90.214 110.092 130.724 150.596 160.056 130.655 90.525 130.581 140.352 160.594 150.056 160.000 30.014 160.224 140.772 140.205 160.720 150.000 60.159 70.531 150.163 160.294 150.136 160.000 10.169 150.589 140.000 40.000 90.000 10.002 30.663 90.466 160.265 160.582 90.337 100.016 140.559 140.084 160.000 30.000 70.000 10.036 40.000 30.125 30.670 120.000 10.102 20.071 80.164 140.406 90.386 60.046 150.068 160.159 140.117 50.284 150.111 150.094 150.000 40.000 160.197 160.000 30.044 140.013 140.002 130.228 160.307 160.588 110.025 160.545 40.134 140.000 10.655 40.302 140.282 160.000 10.060 20.000 110.035 160.000 70.000 80.097 160.000 110.000 70.005 90.000 10.000 40.096 160.000 10.334 150.000 10.000 120.274 150.000 10.513 130.000 10.000 10.280 80.194 70.897 110.000 90.000 100.000 10.000 70.000 10.108 80.279 160.189 150.141 160.059 120.272 20.307 160.445 90.003 100.000 10.353 150.000 20.026 10.000 110.581 140.001 10.000 10.000 10.093 160.002 70.000 30.000 100.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg aphead apcommon aptail apchairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.278 10.383 10.263 10.168 10.661 20.465 10.572 10.665 30.391 10.121 40.304 10.015 20.647 10.349 10.474 10.489 10.321 10.816 50.351 30.722 10.402 40.195 10.515 30.082 10.795 10.215 20.396 10.377 10.082 40.724 10.586 10.015 20.277 10.377 50.201 10.475 20.572 10.778 30.089 10.759 10.556 10.068 10.506 10.467 10.323 30.778 20.427 10.027 20.789 10.744 10.003 10.570 20.561 10.337 10.265 10.711 10.258 10.031 10.569 10.311 10.441 10.179 11.000 10.000 10.233 20.411 20.283 20.380 10.667 10.016 10.048 30.418 20.139 10.173 10.000 10.086 10.014 20.500 10.384 10.497 10.044 30.032 20.752 10.287 10.003 10.000 10.007 10.208 10.000 10.001 20.349 10.008 20.014 20.509 10.500 10.323 10.023 20.176 10.107 10.105 30.000 10.605 10.378 10.016 10.000 10.400 10.192 10.000 10.048 20.037 20.000 10.275 10.119 10.810 10.258 10.006 30.083 50.000 10.568 20.377 20.708 10.000 10.005 20.147 10.014 20.000 20.556 10.085 10.325 10.500 10.083 10.004 20.000 10.590 10.000 10.365 10.000 10.116 10.491 10.000 10.626 10.000 10.000 10.579 10.391 10.050 40.000 10.028 10.000 10.222 10.000 10.063 10.302 10.356 10.149 40.573 10.415 10.013 50.002 40.004 10.000 10.005 40.000 10.000 10.444 10.514 10.000 10.028 10.000 20.156 20.267 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
LGround Inst.permissive0.154 30.275 30.108 30.060 30.573 30.381 30.434 30.654 40.190 40.141 20.097 30.000 30.503 30.180 30.252 30.242 40.242 30.881 30.448 10.494 30.429 30.078 20.364 50.024 30.654 20.213 40.222 30.239 30.099 30.616 20.363 30.000 30.092 30.444 30.000 30.383 40.209 50.815 20.030 30.000 30.166 30.002 40.295 50.099 40.364 20.778 20.177 30.001 40.427 50.585 40.000 20.470 30.268 50.205 30.045 30.642 20.007 30.000 30.333 50.148 30.407 30.130 21.000 10.000 10.156 40.189 30.097 40.169 20.000 50.000 20.056 20.400 30.000 30.000 20.000 10.000 20.556 10.278 30.203 30.323 40.019 40.000 30.402 40.026 30.000 20.000 10.000 30.044 30.000 10.000 30.037 40.000 30.000 30.181 20.000 20.127 30.006 40.028 40.023 30.115 20.000 10.327 20.267 20.000 20.000 10.000 40.028 30.000 10.000 30.000 30.000 10.003 30.048 20.135 40.222 20.089 20.278 10.000 10.514 30.333 40.611 20.000 10.000 30.000 30.000 30.000 20.000 30.037 30.000 30.000 30.000 30.000 30.000 10.322 20.000 10.209 20.000 10.000 30.278 20.000 10.302 30.000 10.000 10.143 30.148 30.000 50.000 10.000 30.000 10.000 20.000 10.015 30.064 50.000 30.272 20.031 50.000 40.257 20.028 20.000 20.000 10.041 20.000 10.000 10.000 20.222 50.000 10.000 20.000 20.000 50.000 20.000 20.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.130 40.246 40.083 40.043 50.547 50.236 40.415 40.672 20.141 50.133 30.067 40.000 30.521 20.114 50.238 40.289 20.232 40.883 20.182 50.373 50.486 10.076 30.488 40.022 40.529 40.199 50.110 40.217 40.100 20.460 40.319 40.000 30.025 50.472 10.000 30.394 30.210 40.537 40.004 40.000 30.083 50.000 50.299 40.061 50.201 50.761 40.084 40.008 30.720 30.557 50.000 20.317 50.280 30.094 50.020 50.564 50.000 40.000 30.400 30.048 40.259 40.101 31.000 10.000 10.190 30.142 50.094 50.137 30.089 30.000 20.101 10.355 50.000 30.000 20.000 10.000 20.000 30.444 20.082 50.384 20.000 50.000 30.334 50.004 50.000 20.000 10.000 30.041 40.000 10.000 30.026 50.000 30.000 30.000 40.000 20.082 50.022 30.000 50.021 40.088 40.000 10.241 40.033 40.000 20.000 10.067 30.000 50.000 10.000 30.000 30.000 10.000 40.026 40.262 20.016 40.000 40.278 10.000 10.500 40.394 10.028 50.000 10.000 30.000 30.000 30.000 20.000 30.019 40.000 30.000 30.000 30.000 30.000 10.156 50.000 10.032 50.000 10.000 30.194 50.000 10.248 40.000 10.000 10.099 40.019 40.308 20.000 10.000 30.000 10.000 20.000 10.007 40.122 20.000 30.175 30.063 20.000 40.271 10.000 50.000 20.000 10.000 50.000 10.000 10.000 20.278 20.000 10.000 20.000 20.111 30.000 20.000 20.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.123 50.223 50.082 50.046 40.564 40.152 50.394 50.578 50.235 20.116 50.034 50.000 30.348 50.119 40.297 20.285 30.202 50.838 40.323 40.407 40.184 50.037 50.516 20.013 50.424 50.214 30.093 50.105 50.078 50.542 30.250 50.000 30.064 40.444 30.000 30.224 50.231 30.537 40.001 50.000 30.126 40.004 30.308 30.193 30.244 40.343 50.228 20.000 50.441 40.588 30.000 20.338 40.275 40.189 40.030 40.600 40.000 40.000 30.378 40.000 50.108 50.098 41.000 10.000 10.096 50.172 40.144 30.011 50.125 20.000 20.000 50.376 40.000 30.000 20.000 10.000 20.000 30.042 50.141 40.377 30.051 20.000 30.483 30.017 40.000 20.000 10.000 30.022 50.000 10.000 30.065 30.000 30.000 30.000 40.000 20.094 40.000 50.042 30.000 50.064 50.000 10.259 30.089 30.000 20.000 10.000 40.022 40.000 10.000 30.000 30.000 10.000 40.018 50.111 50.000 50.000 40.278 10.000 10.444 50.333 40.333 40.000 10.000 30.000 30.000 30.000 20.000 30.000 50.000 30.000 30.000 30.000 30.000 10.267 30.000 10.184 30.000 10.000 30.211 40.000 10.378 20.000 10.000 10.063 50.000 50.275 30.000 10.000 30.000 10.000 20.000 10.007 50.105 30.000 30.032 50.045 30.198 30.171 40.028 20.000 20.000 10.006 30.000 10.000 10.000 20.278 20.000 10.000 20.000 20.044 40.000 20.000 20.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
TD3D Scannet200permissive0.211 20.332 20.177 20.103 20.662 10.413 20.463 20.705 10.192 30.145 10.266 20.215 10.452 40.209 20.222 50.219 50.315 20.893 10.380 20.617 20.439 20.047 40.646 10.080 20.610 30.253 10.237 20.293 20.135 10.379 50.494 20.048 10.252 20.451 20.184 20.483 10.395 20.852 10.083 20.551 20.278 20.036 20.337 20.266 20.544 10.963 10.079 50.039 10.740 20.604 20.000 20.586 10.283 20.282 20.059 20.633 30.028 20.004 20.559 20.309 20.420 20.028 51.000 10.000 10.456 10.411 10.372 10.060 40.046 40.000 20.040 40.694 10.083 20.000 20.000 10.000 20.000 30.083 40.252 20.260 50.200 10.160 10.669 20.111 20.000 20.000 10.006 20.169 20.000 10.007 10.296 20.032 10.074 10.139 30.000 20.321 20.031 10.108 20.088 20.157 10.000 10.231 50.026 50.000 20.000 10.356 20.052 20.000 10.240 10.147 10.000 10.015 20.046 30.144 30.073 30.414 10.222 40.000 10.806 10.343 30.486 30.000 10.008 10.038 20.083 10.002 10.028 20.074 20.032 20.150 20.039 20.008 10.000 10.250 40.000 10.125 40.000 10.052 20.260 30.000 10.143 50.000 10.000 10.543 20.207 20.404 10.000 10.003 20.000 10.000 20.000 10.037 20.093 40.272 20.342 10.039 40.281 20.249 30.224 10.000 20.000 10.074 10.000 10.000 10.000 20.278 20.000 10.000 20.889 10.323 10.000 20.014 10.000 20.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 130.856 140.555 150.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PTv3 ScanNet0.794 20.941 30.813 200.851 90.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 330.696 140.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 400.852 20.889 10.774 100.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 100.824 20.749 10.948 90.887 70.771 11
PonderV20.785 40.978 10.800 300.833 260.788 40.853 190.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 160.832 440.821 50.792 320.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 10.843 180.781 70.858 130.575 70.831 360.685 150.714 40.979 10.594 100.310 300.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 220.818 150.836 230.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 260.958 10.702 490.805 160.708 90.916 360.898 40.801 3
TTT-KD0.773 70.646 950.818 150.809 380.774 100.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 120.912 80.838 40.823 30.694 150.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 120.840 340.564 110.900 110.686 140.677 140.961 170.537 350.348 120.769 160.903 120.785 140.815 80.676 260.939 160.880 130.772 10
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 280.751 260.854 170.540 230.903 100.630 380.672 180.963 150.565 250.357 90.788 50.900 140.737 290.802 170.685 200.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 260.849 110.786 50.846 290.566 100.876 190.690 110.674 160.960 190.576 210.226 700.753 280.904 110.777 160.815 80.722 60.923 310.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
OccuSeg+Semantic0.764 110.758 610.796 340.839 210.746 290.907 10.562 120.850 280.680 170.672 180.978 50.610 40.335 200.777 100.819 480.847 10.830 10.691 170.972 20.885 100.727 26
CU-Hybrid Net0.764 110.924 80.819 130.840 200.757 210.853 190.580 40.848 290.709 40.643 280.958 230.587 150.295 370.753 280.884 220.758 230.815 80.725 40.927 270.867 250.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 170.770 130.852 210.577 50.847 310.711 30.640 320.958 230.592 110.217 760.762 210.888 190.758 230.813 120.726 30.932 250.868 240.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 180.762 170.856 140.562 120.920 40.657 280.658 220.958 230.589 130.337 170.782 60.879 230.787 120.779 390.678 220.926 290.880 130.799 4
DTC0.757 150.843 280.820 110.847 140.791 20.862 110.511 370.870 210.707 50.652 240.954 380.604 80.279 470.760 220.942 20.734 300.766 480.701 130.884 580.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 80.837 370.548 180.896 150.649 300.675 150.962 160.586 160.335 200.771 150.802 520.770 190.787 350.691 170.936 190.880 130.761 13
PNE0.755 170.786 450.835 50.834 250.758 190.849 240.570 90.836 350.648 310.668 200.978 50.581 200.367 70.683 380.856 320.804 70.801 210.678 220.961 50.889 60.716 33
P. Hermosilla: Point Neighborhood Embeddings.
ConDaFormer0.755 170.927 60.822 90.836 230.801 10.849 240.516 340.864 250.651 290.680 130.958 230.584 180.282 440.759 240.855 340.728 320.802 170.678 220.880 630.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
DMF-Net0.752 190.906 130.793 380.802 440.689 430.825 500.556 140.867 220.681 160.602 480.960 190.555 310.365 80.779 90.859 290.747 260.795 290.717 70.917 350.856 340.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 190.742 680.809 250.872 20.758 190.860 120.552 160.891 170.610 450.687 80.960 190.559 290.304 330.766 190.926 60.767 200.797 250.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
BPNetcopyleft0.749 210.909 110.818 150.811 360.752 240.839 360.485 510.842 320.673 200.644 270.957 280.528 410.305 320.773 130.859 290.788 110.818 70.693 160.916 360.856 340.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 210.793 430.790 390.807 400.750 280.856 140.524 300.881 180.588 570.642 310.977 90.591 120.274 500.781 80.929 40.804 70.796 260.642 380.947 100.885 100.715 34
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 230.623 980.804 280.859 40.745 300.824 520.501 410.912 70.690 110.685 100.956 290.567 240.320 270.768 180.918 70.720 370.802 170.676 260.921 330.881 120.779 8
StratifiedFormerpermissive0.747 240.901 140.803 290.845 160.757 210.846 290.512 360.825 390.696 90.645 260.956 290.576 210.262 610.744 330.861 280.742 270.770 460.705 110.899 480.860 310.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 250.870 200.838 30.858 50.729 350.850 230.501 410.874 200.587 580.658 220.956 290.564 260.299 350.765 200.900 140.716 400.812 130.631 430.939 160.858 320.709 35
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 250.771 550.819 130.848 130.702 410.865 100.397 880.899 120.699 70.664 210.948 590.588 140.330 220.746 320.851 380.764 210.796 260.704 120.935 200.866 260.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DiffSeg3D20.745 270.725 780.814 190.837 220.751 260.831 440.514 350.896 150.674 190.684 110.960 190.564 260.303 340.773 130.820 470.713 430.798 240.690 190.923 310.875 200.757 14
Retro-FPN0.744 280.842 290.800 300.767 580.740 310.836 390.541 210.914 60.672 210.626 360.958 230.552 320.272 520.777 100.886 210.696 500.801 210.674 290.941 140.858 320.717 31
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 290.620 990.799 330.849 110.730 340.822 540.493 480.897 130.664 220.681 120.955 320.562 280.378 40.760 220.903 120.738 280.801 210.673 300.907 400.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
MVF-GNN0.743 290.731 730.810 240.726 650.775 90.843 320.528 290.897 130.679 180.674 160.954 380.583 190.322 260.782 60.720 670.802 90.785 360.707 100.935 200.863 280.745 16
SAT0.742 310.860 230.765 530.819 310.769 150.848 260.533 250.829 370.663 230.631 350.955 320.586 160.274 500.753 280.896 160.729 310.760 540.666 320.921 330.855 360.733 22
LRPNet0.742 310.816 370.806 270.807 400.752 240.828 480.575 70.839 340.699 70.637 330.954 380.520 430.320 270.755 270.834 420.760 220.772 430.676 260.915 380.862 290.717 31
LargeKernel3D0.739 330.909 110.820 110.806 420.740 310.852 210.545 190.826 380.594 560.643 280.955 320.541 340.263 600.723 360.858 310.775 180.767 470.678 220.933 230.848 410.694 40
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 340.776 510.790 390.851 90.754 230.854 170.491 500.866 230.596 550.686 90.955 320.536 360.342 150.624 530.869 250.787 120.802 170.628 440.927 270.875 200.704 37
MinkowskiNetpermissive0.736 340.859 240.818 150.832 270.709 390.840 340.521 320.853 270.660 250.643 280.951 490.544 330.286 420.731 340.893 170.675 580.772 430.683 210.874 690.852 390.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 360.890 160.837 40.864 30.726 360.873 60.530 280.824 400.489 900.647 250.978 50.609 50.336 180.624 530.733 610.758 230.776 410.570 680.949 80.877 160.728 24
SparseConvNet0.725 370.647 940.821 100.846 150.721 370.869 70.533 250.754 610.603 510.614 400.955 320.572 230.325 240.710 370.870 240.724 350.823 30.628 440.934 220.865 270.683 43
PointTransformer++0.725 370.727 770.811 230.819 310.765 160.841 330.502 400.814 450.621 410.623 380.955 320.556 300.284 430.620 550.866 260.781 150.757 580.648 350.932 250.862 290.709 35
MatchingNet0.724 390.812 390.812 210.810 370.735 330.834 410.495 470.860 260.572 640.602 480.954 380.512 450.280 460.757 250.845 400.725 340.780 380.606 540.937 180.851 400.700 39
INS-Conv-semantic0.717 400.751 640.759 570.812 350.704 400.868 80.537 240.842 320.609 470.608 440.953 430.534 380.293 380.616 560.864 270.719 390.793 300.640 390.933 230.845 450.663 48
PointMetaBase0.714 410.835 300.785 420.821 290.684 450.846 290.531 270.865 240.614 420.596 520.953 430.500 480.246 660.674 390.888 190.692 510.764 500.624 460.849 850.844 460.675 45
contrastBoundarypermissive0.705 420.769 580.775 470.809 380.687 440.820 570.439 760.812 460.661 240.591 540.945 670.515 440.171 950.633 500.856 320.720 370.796 260.668 310.889 550.847 420.689 41
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 430.774 530.800 300.793 490.760 180.847 280.471 550.802 490.463 970.634 340.968 130.491 510.271 540.726 350.910 90.706 450.815 80.551 800.878 640.833 470.570 80
RFCR0.702 440.889 170.745 670.813 340.672 480.818 620.493 480.815 440.623 390.610 420.947 610.470 600.249 650.594 590.848 390.705 460.779 390.646 360.892 530.823 530.611 63
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 450.825 340.796 340.723 660.716 380.832 430.433 780.816 420.634 360.609 430.969 110.418 860.344 140.559 710.833 430.715 410.808 150.560 740.902 450.847 420.680 44
JSENetpermissive0.699 460.881 190.762 540.821 290.667 490.800 740.522 310.792 520.613 430.607 450.935 870.492 500.205 810.576 640.853 360.691 520.758 560.652 340.872 720.828 500.649 52
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 470.743 670.794 360.655 890.684 450.822 540.497 460.719 710.622 400.617 390.977 90.447 730.339 160.750 310.664 790.703 480.790 330.596 580.946 120.855 360.647 53
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 480.732 720.772 480.786 500.677 470.866 90.517 330.848 290.509 830.626 360.952 470.536 360.225 720.545 770.704 700.689 550.810 140.564 730.903 440.854 380.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 490.884 180.754 610.795 470.647 560.818 620.422 800.802 490.612 440.604 460.945 670.462 630.189 890.563 700.853 360.726 330.765 490.632 420.904 420.821 560.606 67
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 500.704 840.741 710.754 620.656 510.829 460.501 410.741 660.609 470.548 610.950 530.522 420.371 50.633 500.756 560.715 410.771 450.623 470.861 800.814 590.658 49
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 510.866 210.748 640.819 310.645 580.794 770.450 660.802 490.587 580.604 460.945 670.464 620.201 840.554 730.840 410.723 360.732 690.602 560.907 400.822 550.603 70
DGNet0.684 520.712 830.784 430.782 540.658 500.835 400.499 450.823 410.641 330.597 510.950 530.487 530.281 450.575 650.619 830.647 710.764 500.620 490.871 750.846 440.688 42
VACNN++0.684 520.728 760.757 600.776 550.690 420.804 720.464 600.816 420.577 630.587 550.945 670.508 470.276 490.671 400.710 680.663 630.750 620.589 630.881 610.832 490.653 51
KP-FCNN0.684 520.847 270.758 590.784 520.647 560.814 650.473 540.772 550.605 490.594 530.935 870.450 710.181 920.587 600.805 510.690 530.785 360.614 500.882 600.819 570.632 59
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
PointContrast_LA_SEM0.683 550.757 620.784 430.786 500.639 600.824 520.408 830.775 540.604 500.541 630.934 910.532 390.269 560.552 740.777 540.645 740.793 300.640 390.913 390.824 520.671 46
Superpoint Network0.683 550.851 260.728 750.800 460.653 530.806 700.468 570.804 470.572 640.602 480.946 640.453 700.239 690.519 830.822 450.689 550.762 530.595 600.895 510.827 510.630 60
VI-PointConv0.676 570.770 570.754 610.783 530.621 640.814 650.552 160.758 590.571 660.557 590.954 380.529 400.268 580.530 800.682 740.675 580.719 720.603 550.888 560.833 470.665 47
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 580.789 440.748 640.763 600.635 620.814 650.407 850.747 630.581 620.573 560.950 530.484 540.271 540.607 570.754 570.649 680.774 420.596 580.883 590.823 530.606 67
SALANet0.670 590.816 370.770 510.768 570.652 540.807 690.451 630.747 630.659 270.545 620.924 980.473 590.149 1050.571 670.811 500.635 770.746 630.623 470.892 530.794 710.570 80
O3DSeg0.668 600.822 350.771 500.496 1090.651 550.833 420.541 210.761 580.555 720.611 410.966 140.489 520.370 60.388 1020.580 860.776 170.751 600.570 680.956 60.817 580.646 54
PointConvpermissive0.666 610.781 480.759 570.699 740.644 590.822 540.475 530.779 530.564 690.504 800.953 430.428 800.203 830.586 620.754 570.661 640.753 590.588 640.902 450.813 610.642 55
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 610.703 850.781 450.751 640.655 520.830 450.471 550.769 560.474 930.537 650.951 490.475 580.279 470.635 480.698 730.675 580.751 600.553 790.816 920.806 630.703 38
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 630.746 650.708 780.722 670.638 610.820 570.451 630.566 990.599 530.541 630.950 530.510 460.313 290.648 450.819 480.616 820.682 870.590 620.869 760.810 620.656 50
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 640.778 490.702 810.806 420.619 650.813 680.468 570.693 790.494 860.524 720.941 790.449 720.298 360.510 850.821 460.675 580.727 710.568 710.826 900.803 650.637 57
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 650.698 870.743 690.650 900.564 820.820 570.505 390.758 590.631 370.479 840.945 670.480 560.226 700.572 660.774 550.690 530.735 670.614 500.853 840.776 860.597 73
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 660.752 630.734 730.664 870.583 770.815 640.399 870.754 610.639 340.535 670.942 770.470 600.309 310.665 410.539 890.650 670.708 770.635 410.857 830.793 730.642 55
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 670.778 490.731 740.699 740.577 780.829 460.446 680.736 670.477 920.523 740.945 670.454 670.269 560.484 920.749 600.618 800.738 640.599 570.827 890.792 760.621 62
PointConv-SFPN0.641 680.776 510.703 800.721 680.557 850.826 490.451 630.672 850.563 700.483 830.943 760.425 830.162 1000.644 460.726 620.659 650.709 760.572 670.875 670.786 810.559 86
MVPNetpermissive0.641 680.831 310.715 760.671 840.590 730.781 830.394 890.679 820.642 320.553 600.937 840.462 630.256 620.649 440.406 1020.626 780.691 840.666 320.877 650.792 760.608 66
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 700.717 820.701 820.692 770.576 790.801 730.467 590.716 720.563 700.459 900.953 430.429 790.169 970.581 630.854 350.605 830.710 740.550 810.894 520.793 730.575 78
FPConvpermissive0.639 710.785 460.760 560.713 720.603 680.798 750.392 900.534 1040.603 510.524 720.948 590.457 650.250 640.538 780.723 650.598 870.696 820.614 500.872 720.799 660.567 83
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 720.797 420.769 520.641 950.590 730.820 570.461 610.537 1030.637 350.536 660.947 610.388 930.206 800.656 420.668 770.647 710.732 690.585 650.868 770.793 730.473 106
PointSPNet0.637 730.734 710.692 890.714 710.576 790.797 760.446 680.743 650.598 540.437 950.942 770.403 890.150 1040.626 520.800 530.649 680.697 810.557 770.846 860.777 850.563 84
SConv0.636 740.830 320.697 850.752 630.572 810.780 850.445 700.716 720.529 760.530 680.951 490.446 740.170 960.507 870.666 780.636 760.682 870.541 870.886 570.799 660.594 74
Supervoxel-CNN0.635 750.656 920.711 770.719 690.613 660.757 940.444 730.765 570.534 750.566 570.928 960.478 570.272 520.636 470.531 910.664 620.645 970.508 950.864 790.792 760.611 63
joint point-basedpermissive0.634 760.614 1000.778 460.667 860.633 630.825 500.420 810.804 470.467 950.561 580.951 490.494 490.291 390.566 680.458 970.579 940.764 500.559 760.838 870.814 590.598 72
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 770.731 730.688 920.675 810.591 720.784 820.444 730.565 1000.610 450.492 810.949 570.456 660.254 630.587 600.706 690.599 860.665 930.612 530.868 770.791 790.579 77
PointNet2-SFPN0.631 780.771 550.692 890.672 820.524 900.837 370.440 750.706 770.538 740.446 920.944 730.421 850.219 750.552 740.751 590.591 900.737 650.543 860.901 470.768 890.557 87
APCF-Net0.631 780.742 680.687 940.672 820.557 850.792 800.408 830.665 860.545 730.508 770.952 470.428 800.186 900.634 490.702 710.620 790.706 780.555 780.873 700.798 680.581 76
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 780.626 970.745 670.801 450.607 670.751 950.506 380.729 700.565 680.491 820.866 1120.434 750.197 870.595 580.630 820.709 440.705 790.560 740.875 670.740 970.491 101
FusionAwareConv0.630 810.604 1020.741 710.766 590.590 730.747 960.501 410.734 680.503 850.527 700.919 1020.454 670.323 250.550 760.420 1010.678 570.688 850.544 840.896 500.795 700.627 61
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 820.800 410.625 1040.719 690.545 870.806 700.445 700.597 940.448 1000.519 750.938 830.481 550.328 230.489 910.499 960.657 660.759 550.592 610.881 610.797 690.634 58
SegGroup_sempermissive0.627 830.818 360.747 660.701 730.602 690.764 910.385 940.629 910.490 880.508 770.931 950.409 880.201 840.564 690.725 630.618 800.692 830.539 880.873 700.794 710.548 90
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 840.830 320.694 870.757 610.563 830.772 890.448 670.647 890.520 790.509 760.949 570.431 780.191 880.496 890.614 840.647 710.672 910.535 900.876 660.783 820.571 79
dtc_net0.625 840.703 850.751 630.794 480.535 880.848 260.480 520.676 840.528 770.469 870.944 730.454 670.004 1170.464 940.636 810.704 470.758 560.548 830.924 300.787 800.492 100
HPEIN0.618 860.729 750.668 950.647 920.597 710.766 900.414 820.680 810.520 790.525 710.946 640.432 760.215 770.493 900.599 850.638 750.617 1020.570 680.897 490.806 630.605 69
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 870.858 250.772 480.489 1100.532 890.792 800.404 860.643 900.570 670.507 790.935 870.414 870.046 1140.510 850.702 710.602 850.705 790.549 820.859 810.773 870.534 93
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 880.760 600.667 960.649 910.521 910.793 780.457 620.648 880.528 770.434 970.947 610.401 900.153 1030.454 950.721 660.648 700.717 730.536 890.904 420.765 900.485 102
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
Weakly-Openseg v30.604 890.901 140.762 540.627 970.478 970.820 570.346 1000.689 800.353 1100.528 690.933 920.217 1150.172 940.530 800.725 630.593 890.737 650.515 920.858 820.772 880.515 96
wsss-transformer0.600 900.634 960.743 690.697 760.601 700.781 830.437 770.585 970.493 870.446 920.933 920.394 910.011 1160.654 430.661 800.603 840.733 680.526 910.832 880.761 920.480 103
LAP-D0.594 910.720 800.692 890.637 960.456 1010.773 880.391 920.730 690.587 580.445 940.940 810.381 940.288 400.434 980.453 990.591 900.649 950.581 660.777 960.749 960.610 65
DPC0.592 920.720 800.700 830.602 1010.480 960.762 930.380 950.713 750.585 610.437 950.940 810.369 960.288 400.434 980.509 950.590 920.639 1000.567 720.772 970.755 940.592 75
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 930.766 590.659 990.683 790.470 1000.740 980.387 930.620 930.490 880.476 850.922 1000.355 990.245 670.511 840.511 940.571 950.643 980.493 990.872 720.762 910.600 71
ROSMRF0.580 940.772 540.707 790.681 800.563 830.764 910.362 970.515 1050.465 960.465 890.936 860.427 820.207 790.438 960.577 870.536 980.675 900.486 1000.723 1030.779 830.524 95
SD-DETR0.576 950.746 650.609 1080.445 1140.517 920.643 1090.366 960.714 740.456 980.468 880.870 1110.432 760.264 590.558 720.674 750.586 930.688 850.482 1010.739 1010.733 990.537 92
SQN_0.1%0.569 960.676 890.696 860.657 880.497 930.779 860.424 790.548 1010.515 810.376 1020.902 1090.422 840.357 90.379 1030.456 980.596 880.659 940.544 840.685 1060.665 1100.556 88
TextureNetpermissive0.566 970.672 910.664 970.671 840.494 940.719 990.445 700.678 830.411 1060.396 1000.935 870.356 980.225 720.412 1000.535 900.565 960.636 1010.464 1030.794 950.680 1070.568 82
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 980.648 930.700 830.770 560.586 760.687 1030.333 1020.650 870.514 820.475 860.906 1060.359 970.223 740.340 1050.442 1000.422 1090.668 920.501 960.708 1040.779 830.534 93
Pointnet++ & Featurepermissive0.557 990.735 700.661 980.686 780.491 950.744 970.392 900.539 1020.451 990.375 1030.946 640.376 950.205 810.403 1010.356 1050.553 970.643 980.497 970.824 910.756 930.515 96
GMLPs0.538 1000.495 1100.693 880.647 920.471 990.793 780.300 1050.477 1060.505 840.358 1040.903 1080.327 1020.081 1110.472 930.529 920.448 1070.710 740.509 930.746 990.737 980.554 89
PanopticFusion-label0.529 1010.491 1110.688 920.604 1000.386 1060.632 1100.225 1160.705 780.434 1030.293 1100.815 1140.348 1000.241 680.499 880.669 760.507 1000.649 950.442 1090.796 940.602 1140.561 85
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1020.676 890.591 1110.609 980.442 1020.774 870.335 1010.597 940.422 1050.357 1050.932 940.341 1010.094 1100.298 1070.528 930.473 1050.676 890.495 980.602 1120.721 1020.349 114
Online SegFusion0.515 1030.607 1010.644 1020.579 1030.434 1030.630 1110.353 980.628 920.440 1010.410 980.762 1170.307 1040.167 980.520 820.403 1030.516 990.565 1050.447 1070.678 1070.701 1040.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1040.558 1060.608 1090.424 1160.478 970.690 1020.246 1120.586 960.468 940.450 910.911 1040.394 910.160 1010.438 960.212 1120.432 1080.541 1100.475 1020.742 1000.727 1000.477 104
PCNN0.498 1050.559 1050.644 1020.560 1050.420 1050.711 1010.229 1140.414 1070.436 1020.352 1060.941 790.324 1030.155 1020.238 1120.387 1040.493 1010.529 1110.509 930.813 930.751 950.504 99
3DMV0.484 1060.484 1120.538 1140.643 940.424 1040.606 1140.310 1030.574 980.433 1040.378 1010.796 1150.301 1050.214 780.537 790.208 1130.472 1060.507 1140.413 1120.693 1050.602 1140.539 91
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1070.577 1040.611 1070.356 1180.321 1140.715 1000.299 1070.376 1110.328 1140.319 1080.944 730.285 1070.164 990.216 1150.229 1100.484 1030.545 1090.456 1050.755 980.709 1030.475 105
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1080.679 880.604 1100.578 1040.380 1070.682 1040.291 1080.106 1180.483 910.258 1160.920 1010.258 1110.025 1150.231 1140.325 1060.480 1040.560 1070.463 1040.725 1020.666 1090.231 118
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1090.474 1130.623 1050.463 1120.366 1090.651 1070.310 1030.389 1100.349 1120.330 1070.937 840.271 1090.126 1070.285 1080.224 1110.350 1140.577 1040.445 1080.625 1100.723 1010.394 110
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1100.548 1070.548 1130.597 1020.363 1100.628 1120.300 1050.292 1130.374 1080.307 1090.881 1100.268 1100.186 900.238 1120.204 1140.407 1100.506 1150.449 1060.667 1080.620 1130.462 108
SurfaceConvPF0.442 1100.505 1090.622 1060.380 1170.342 1120.654 1060.227 1150.397 1090.367 1090.276 1120.924 980.240 1120.198 860.359 1040.262 1080.366 1110.581 1030.435 1100.640 1090.668 1080.398 109
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1120.437 1150.646 1010.474 1110.369 1080.645 1080.353 980.258 1150.282 1170.279 1110.918 1030.298 1060.147 1060.283 1090.294 1070.487 1020.562 1060.427 1110.619 1110.633 1120.352 113
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1130.525 1080.647 1000.522 1060.324 1130.488 1180.077 1190.712 760.353 1100.401 990.636 1190.281 1080.176 930.340 1050.565 880.175 1180.551 1080.398 1130.370 1190.602 1140.361 112
SPLAT Netcopyleft0.393 1140.472 1140.511 1150.606 990.311 1150.656 1050.245 1130.405 1080.328 1140.197 1170.927 970.227 1140.000 1190.001 1200.249 1090.271 1170.510 1120.383 1150.593 1130.699 1050.267 116
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1150.297 1170.491 1160.432 1150.358 1110.612 1130.274 1100.116 1170.411 1060.265 1130.904 1070.229 1130.079 1120.250 1100.185 1150.320 1150.510 1120.385 1140.548 1140.597 1170.394 110
PointNet++permissive0.339 1160.584 1030.478 1170.458 1130.256 1170.360 1190.250 1110.247 1160.278 1180.261 1150.677 1180.183 1160.117 1080.212 1160.145 1170.364 1120.346 1190.232 1190.548 1140.523 1180.252 117
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1170.114 1190.589 1120.499 1080.147 1190.555 1150.290 1090.336 1120.290 1160.262 1140.865 1130.102 1190.000 1190.037 1180.000 1200.000 1200.462 1160.381 1160.389 1180.664 1110.473 106
SSC-UNetpermissive0.308 1180.353 1160.290 1190.278 1190.166 1180.553 1160.169 1180.286 1140.147 1190.148 1190.908 1050.182 1170.064 1130.023 1190.018 1190.354 1130.363 1170.345 1170.546 1160.685 1060.278 115
ScanNetpermissive0.306 1190.203 1180.366 1180.501 1070.311 1150.524 1170.211 1170.002 1200.342 1130.189 1180.786 1160.145 1180.102 1090.245 1110.152 1160.318 1160.348 1180.300 1180.460 1170.437 1190.182 119
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1200.000 1200.041 1200.172 1200.030 1200.062 1200.001 1200.035 1190.004 1200.051 1200.143 1200.019 1200.003 1180.041 1170.050 1180.003 1190.054 1200.018 1200.005 1200.264 1200.082 120


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.622 10.926 80.710 30.541 100.502 20.772 60.314 40.598 110.425 80.504 90.565 10.650 60.716 20.809 70.476 110.747 40.618 10.963 30.364 19
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
Competitor-MAFT0.618 20.866 150.724 10.628 10.484 30.803 10.300 70.509 320.496 10.539 10.547 50.703 10.668 80.708 300.463 160.708 160.595 30.959 50.418 7
SIM3D0.617 30.952 40.629 160.539 110.426 150.768 100.302 60.681 20.425 90.473 150.511 150.701 20.717 10.821 60.467 140.774 10.559 140.914 170.448 2
Spherical Mask(CtoF)0.616 40.946 50.654 120.555 60.434 120.769 90.271 110.604 80.447 50.505 70.549 20.698 30.716 20.775 150.480 80.747 50.575 100.925 130.436 4
EV3D0.615 50.946 50.652 130.555 60.433 130.773 50.271 120.604 80.447 50.506 60.544 60.698 30.716 20.775 150.480 80.747 50.572 120.925 130.435 5
ExtMask3D0.598 60.852 160.692 70.433 300.461 70.791 30.264 130.488 350.493 20.508 50.528 140.594 120.706 60.791 90.483 60.734 90.595 40.911 190.437 3
MAFT0.596 70.889 130.721 20.448 230.460 80.768 110.251 150.558 210.408 100.504 80.539 80.616 100.618 110.858 30.482 70.684 190.551 170.931 120.450 1
UniPerception0.588 80.963 30.667 100.493 150.472 60.750 140.229 180.528 270.468 40.498 120.542 70.643 70.530 200.661 370.463 150.695 180.599 20.972 10.420 6
MG-Former0.587 90.852 160.639 150.454 220.393 200.758 130.338 20.572 160.480 30.527 30.491 210.671 50.527 210.867 10.485 50.601 300.590 70.938 110.390 11
InsSSM0.586 101.000 10.593 200.440 260.480 40.771 70.345 10.437 390.444 70.495 130.548 40.579 150.621 100.720 270.409 220.712 110.593 50.960 40.395 9
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Queryformer0.583 110.926 80.702 50.393 360.504 10.733 200.276 100.527 280.373 160.479 140.534 100.533 220.697 70.720 280.436 200.745 70.592 60.958 60.363 20
KmaxOneFormerNetpermissive0.581 120.745 270.692 80.551 80.458 90.798 20.264 140.531 260.369 180.513 40.531 130.632 80.494 240.798 80.567 20.648 230.558 160.950 80.362 21
Competitor-SPFormer0.580 130.721 330.705 40.593 40.444 110.786 40.286 80.564 190.376 150.498 110.534 110.546 200.390 430.785 110.577 10.708 150.579 90.954 70.388 12
PBNetpermissive0.573 140.926 80.575 250.619 20.472 50.736 180.239 170.487 360.383 140.459 180.506 180.533 210.585 130.767 170.404 230.717 100.559 150.969 20.381 15
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
TST3D0.569 150.778 240.675 90.598 30.451 100.727 210.280 90.476 380.395 110.472 160.457 270.583 130.580 150.777 120.462 180.735 80.547 190.919 160.333 27
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
Mask3D0.566 160.926 80.597 190.408 330.420 170.737 170.239 160.598 110.386 130.458 190.549 20.568 180.716 20.601 430.480 80.646 240.575 100.922 150.364 18
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
OneFormer3Dcopyleft0.566 160.781 230.697 60.562 50.431 140.770 80.331 30.400 450.373 170.529 20.504 190.568 170.475 270.732 250.470 120.762 20.550 180.871 340.379 16
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
ISBNetpermissive0.559 180.939 70.655 110.383 390.426 160.763 120.180 200.534 250.386 120.499 100.509 170.621 90.427 370.704 320.467 130.649 220.571 130.948 90.401 8
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.552 191.000 10.611 180.438 270.392 210.714 220.139 230.598 130.327 210.389 220.510 160.598 110.427 380.754 200.463 170.761 30.588 80.903 220.329 28
SPFormerpermissive0.549 200.745 270.640 140.484 160.395 190.739 160.311 50.566 180.335 200.468 170.492 200.555 190.478 260.747 220.436 190.712 120.540 200.893 260.343 26
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
DKNet0.532 210.815 200.624 170.517 120.377 230.749 150.107 250.509 310.304 230.437 200.475 220.581 140.539 180.775 140.339 280.640 260.506 230.901 230.385 14
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
IPCA-Inst0.520 220.889 130.551 290.548 90.418 180.665 320.064 340.585 140.260 310.277 360.471 240.500 230.644 90.785 100.369 240.591 330.511 210.878 310.362 22
SoftGroup++0.513 230.704 350.578 240.398 350.363 290.704 230.061 350.647 50.297 280.378 250.537 90.343 260.614 120.828 50.295 330.710 140.505 250.875 330.394 10
SSTNetpermissive0.506 240.738 310.549 300.497 140.316 340.693 260.178 210.377 480.198 370.330 270.463 260.576 160.515 220.857 40.494 30.637 270.457 290.943 100.290 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
SoftGrouppermissive0.504 250.667 420.579 220.372 410.381 220.694 250.072 310.677 30.303 240.387 230.531 120.319 300.582 140.754 190.318 290.643 250.492 260.907 210.388 13
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
DANCENET0.504 250.926 80.579 210.472 180.367 260.626 420.165 220.432 400.221 330.408 210.449 290.411 240.564 160.746 230.421 210.707 170.438 320.846 420.288 38
TD3Dpermissive0.489 270.852 160.511 390.434 280.322 330.735 190.101 280.512 300.355 190.349 260.468 250.283 340.514 230.676 360.268 380.671 200.510 220.908 200.329 29
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
OccuSeg+instance0.486 280.802 220.536 320.428 310.369 250.702 240.205 190.331 530.301 250.379 240.474 230.327 270.437 320.862 20.485 40.601 310.394 400.846 440.273 41
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
TopoSeg0.479 290.704 350.564 260.467 200.366 270.633 400.068 320.554 220.262 300.328 280.447 300.323 280.534 190.722 260.288 350.614 280.482 270.912 180.358 24
DualGroup0.469 300.815 200.552 280.398 340.374 240.683 280.130 240.539 240.310 220.327 290.407 330.276 350.447 310.535 470.342 270.659 210.455 300.900 250.301 33
SSEC0.465 310.667 420.578 230.502 130.362 300.641 390.035 440.605 70.291 290.323 300.451 280.296 320.417 410.677 350.245 420.501 510.506 240.900 240.366 17
HAISpermissive0.457 320.704 350.561 270.457 210.364 280.673 290.046 430.547 230.194 380.308 310.426 310.288 330.454 300.711 290.262 390.563 410.434 340.889 280.344 25
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DD-UNet+Group0.436 330.630 500.508 420.480 170.310 360.624 440.065 330.638 60.174 390.256 400.384 370.194 470.428 350.759 180.289 340.574 380.400 380.849 410.291 36
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.435 340.716 340.495 440.355 430.331 310.689 270.102 270.394 470.208 360.280 340.395 350.250 380.544 170.741 240.309 310.536 470.391 410.842 470.258 45
Mask-Group0.434 350.778 240.516 370.471 190.330 320.658 330.029 460.526 290.249 320.256 390.400 340.309 310.384 460.296 630.368 250.575 370.425 350.877 320.362 23
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Box2Mask0.433 360.741 290.463 490.433 290.283 390.625 430.103 260.298 580.125 480.260 380.424 320.322 290.472 280.701 330.363 260.711 130.309 570.882 290.272 43
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
RPGN0.428 370.630 500.508 410.367 420.249 460.658 340.016 540.673 40.131 460.234 430.383 380.270 360.434 330.748 210.274 370.609 290.406 370.842 460.267 44
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
DENet0.413 380.741 290.520 340.237 540.284 380.523 530.097 290.691 10.138 430.209 530.229 550.238 410.390 440.707 310.310 300.448 580.470 280.892 270.310 31
PointGroup0.407 390.639 490.496 430.415 320.243 480.645 380.021 510.570 170.114 490.211 510.359 400.217 450.428 360.660 380.256 400.562 420.341 490.860 370.291 35
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
CSC-Pretrained0.405 400.738 310.465 480.331 470.205 520.655 350.051 390.601 100.092 530.211 520.329 430.198 460.459 290.775 130.195 490.524 490.400 390.878 300.184 54
PE0.396 410.667 420.467 470.446 250.243 470.624 450.022 500.577 150.106 500.219 460.340 410.239 400.487 250.475 540.225 440.541 460.350 470.818 490.273 42
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Dyco3Dcopyleft0.395 420.642 480.518 360.447 240.259 450.666 310.050 400.251 630.166 400.231 440.362 390.232 420.331 490.535 460.229 430.587 340.438 330.850 390.317 30
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OSIS0.392 430.778 240.530 330.220 560.278 400.567 500.083 300.330 540.299 260.270 370.310 460.143 530.260 530.624 410.277 360.568 400.361 450.865 360.301 32
AOIA0.387 440.704 350.515 380.385 380.225 510.669 300.005 610.482 370.126 470.181 560.269 520.221 440.426 390.478 530.218 450.592 320.371 430.851 380.242 47
SSEN0.384 450.852 160.494 450.192 570.226 500.648 370.022 490.398 460.299 270.277 350.317 450.231 430.194 600.514 500.196 470.586 350.444 310.843 450.184 53
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
Mask3D_evaluation0.382 460.593 520.520 350.390 370.314 350.600 460.018 530.287 610.151 420.281 330.387 360.169 510.429 340.654 390.172 530.578 360.384 420.670 600.278 40
PCJC0.375 470.704 350.542 310.284 510.197 540.649 360.006 580.426 410.138 440.242 410.304 470.183 500.388 450.629 400.141 600.546 450.344 480.738 550.283 39
ClickSeg_Instance0.366 480.654 460.375 530.184 580.302 370.592 480.050 410.300 570.093 520.283 320.277 490.249 390.426 400.615 420.299 320.504 500.367 440.832 480.191 52
SphereSeg0.357 490.651 470.411 510.345 440.264 440.630 410.059 360.289 600.212 340.240 420.336 420.158 520.305 500.557 440.159 560.455 570.341 500.726 570.294 34
3D-MPA0.355 500.457 620.484 460.299 490.277 410.591 490.047 420.332 510.212 350.217 470.278 480.193 480.413 420.410 570.195 480.574 390.352 460.849 400.213 50
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
NeuralBF0.353 510.593 520.511 400.375 400.264 430.597 470.008 560.332 520.160 410.229 450.274 510.000 740.206 570.678 340.155 570.485 530.422 360.816 500.254 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
RWSeg0.348 520.475 590.456 500.320 480.275 420.476 550.020 520.491 340.056 600.212 500.320 440.261 370.302 510.520 480.182 510.557 430.285 590.867 350.197 51
GICN0.341 530.580 540.371 540.344 450.198 530.469 560.052 380.564 200.093 510.212 490.212 570.127 550.347 480.537 450.206 460.525 480.329 520.729 560.241 48
One_Thing_One_Clickpermissive0.326 540.472 600.361 550.232 550.183 550.555 510.000 670.498 330.038 620.195 540.226 560.362 250.168 610.469 550.251 410.553 440.335 510.846 430.117 62
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Occipital-SCS0.320 550.679 410.352 560.334 460.229 490.436 570.025 470.412 440.058 580.161 610.240 540.085 570.262 520.496 520.187 500.467 550.328 530.775 510.231 49
Sparse R-CNN0.292 560.704 350.213 660.153 600.154 570.551 520.053 370.212 640.132 450.174 580.274 500.070 590.363 470.441 560.176 520.424 600.234 610.758 530.161 58
MTML0.282 570.577 550.380 520.182 590.107 630.430 580.001 640.422 420.057 590.179 570.162 600.070 600.229 550.511 510.161 540.491 520.313 540.650 630.162 56
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SALoss-ResNet0.262 580.667 420.335 570.067 670.123 610.427 590.022 480.280 620.058 570.216 480.211 580.039 630.142 630.519 490.106 640.338 640.310 560.721 580.138 59
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.254 590.463 610.249 650.113 610.167 560.412 610.000 660.374 490.073 540.173 590.243 530.130 540.228 560.368 590.160 550.356 620.208 620.711 590.136 60
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
3D-BoNet0.253 600.519 570.324 600.251 530.137 600.345 660.031 450.419 430.069 550.162 600.131 620.052 610.202 590.338 610.147 590.301 670.303 580.651 620.178 55
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SPG_WSIS0.251 610.380 640.274 630.289 500.144 580.413 600.000 670.311 550.065 560.113 630.130 630.029 660.204 580.388 580.108 630.459 560.311 550.769 520.127 61
SegGroup_inspermissive0.246 620.556 560.335 580.062 690.115 620.490 540.000 670.297 590.018 660.186 550.142 610.083 580.233 540.216 650.153 580.469 540.251 600.744 540.083 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PanopticFusion-inst0.214 630.250 690.330 590.275 520.103 640.228 720.000 670.345 500.024 640.088 650.203 590.186 490.167 620.367 600.125 610.221 700.112 720.666 610.162 57
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
UNet-backbone0.161 640.519 570.259 640.084 630.059 660.325 680.002 620.093 690.009 680.077 670.064 660.045 620.044 700.161 670.045 660.331 650.180 640.566 640.033 74
3D-SISpermissive0.161 640.407 630.155 710.068 660.043 700.346 650.001 630.134 660.005 690.088 640.106 650.037 640.135 650.321 620.028 700.339 630.116 710.466 670.093 64
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 660.356 650.173 690.113 620.140 590.359 620.012 550.023 720.039 610.134 620.123 640.008 700.089 660.149 680.117 620.221 690.128 690.563 650.094 63
Region-18class0.146 670.175 730.321 610.080 640.062 650.357 630.000 670.307 560.002 710.066 680.044 680.000 740.018 720.036 730.054 650.447 590.133 670.472 660.060 69
SemRegionNet-20cls0.121 680.296 670.203 670.071 650.058 670.349 640.000 670.150 650.019 650.054 700.034 710.017 690.052 680.042 720.013 730.209 710.183 630.371 680.057 70
3D-BEVIS0.117 690.250 690.308 620.020 730.009 750.269 710.006 590.008 730.029 630.037 730.014 740.003 720.036 710.147 690.042 680.381 610.118 700.362 690.069 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Hier3Dcopyleft0.117 690.222 710.161 700.054 710.027 720.289 690.000 670.124 670.001 730.079 660.061 670.027 670.141 640.240 640.005 740.310 660.129 680.153 740.081 66
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
tmp0.113 710.333 660.151 720.056 700.053 680.344 670.000 670.105 680.016 670.049 710.035 700.020 680.053 670.048 710.013 720.183 730.173 650.344 710.054 71
Sem_Recon_ins0.098 720.295 680.187 680.015 740.036 710.213 730.005 600.038 710.003 700.056 690.037 690.036 650.015 730.051 700.044 670.209 720.098 730.354 700.071 67
ASIS0.085 730.037 740.080 740.066 680.047 690.282 700.000 670.052 700.002 720.047 720.026 720.001 730.046 690.194 660.031 690.264 680.140 660.167 730.047 73
Sgpn_scannet0.049 740.023 750.134 730.031 720.013 740.144 740.006 570.008 740.000 740.028 740.017 730.003 710.009 750.000 740.021 710.122 740.095 740.175 720.054 72
MaskRCNN 2d->3d Proj0.022 750.185 720.000 750.000 750.015 730.000 750.000 650.006 750.000 740.010 750.006 750.107 560.012 740.000 740.002 750.027 750.004 750.022 750.001 75


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3