Results for Sparse R-CNN
Submission data
Full name | Sparse Convolutions for Semantic 3D Instance Segmentation |
Description | Semantic Instance Segmentation based on Mask R-CNN, 3D-SIS and Submanifold Sparse Convolutional Networks |
Input Data Types | Uses Color,Uses Geometry Uses 3D |
Programming language(s) | Python 3.8, PyTorch 1.4 |
Hardware | GeForce GTX 1080 Ti |
Submission creation date | 16 Mar, 2020 |
Last edited | 20 May, 2020 |
3D semantic instance results
Info | avg ap 50% | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.515 | 1.000 | 0.538 | 0.282 | 0.468 | 0.790 | 0.173 | 0.345 | 0.429 | 0.413 | 0.484 | 0.176 | 0.595 | 0.591 | 0.522 | 0.668 | 0.476 | 0.986 | 0.327 |