Submitted by tong he.

Submission data

Full nameDynamic Convolution
DescriptionDyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
Publication titleDyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution
Publication authorsTong He; Chunhua Shen; Anton van den Hengel
Publication venueCVPR2021
Publication URLhttps://github.com/aim-uofa/DyCo3D
Input Data TypesUses Color,Uses Geometry        Uses 3D
Programming language(s)C++ with CUDA
Hardware1080ti
Websitehttps://github.com/aim-uofa/DyCo3D
Source code or download URLhttps://github.com/aim-uofa/DyCo3D
Submission creation date10 Nov, 2020
Last edited14 Sep, 2021

3D semantic instance results



Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
copyleft0.7611.0000.9350.8930.7520.8630.6000.5880.7420.6410.6330.5460.5500.8570.7890.8530.7620.9870.699