ScanNet200 3D Semantic Label Benchmark
The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.
Evaluation and metricsOur evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | alarm clock | armchair | backpack | bag | ball | bar | basket | bathroom cabinet | bathroom counter | bathroom stall | bathroom stall door | bathroom vanity | bathtub | bed | bench | bicycle | bin | blackboard | blanket | blinds | board | book | bookshelf | bottle | bowl | box | broom | bucket | bulletin board | cabinet | calendar | candle | cart | case of water bottles | cd case | ceiling | ceiling light | chair | clock | closet | closet door | closet rod | closet wall | clothes | clothes dryer | coat rack | coffee kettle | coffee maker | coffee table | column | computer tower | container | copier | couch | counter | crate | cup | curtain | cushion | decoration | desk | dining table | dish rack | dishwasher | divider | door | doorframe | dresser | dumbbell | dustpan | end table | fan | file cabinet | fire alarm | fire extinguisher | fireplace | floor | folded chair | furniture | guitar | guitar case | hair dryer | handicap bar | hat | headphones | ironing board | jacket | keyboard | keyboard piano | kitchen cabinet | kitchen counter | ladder | lamp | laptop | laundry basket | laundry detergent | laundry hamper | ledge | light | light switch | luggage | machine | mailbox | mat | mattress | microwave | mini fridge | mirror | monitor | mouse | music stand | nightstand | object | office chair | ottoman | oven | paper | paper bag | paper cutter | paper towel dispenser | paper towel roll | person | piano | picture | pillar | pillow | pipe | plant | plate | plunger | poster | potted plant | power outlet | power strip | printer | projector | projector screen | purse | rack | radiator | rail | range hood | recycling bin | refrigerator | scale | seat | shelf | shoe | shower | shower curtain | shower curtain rod | shower door | shower floor | shower head | shower wall | sign | sink | soap dish | soap dispenser | sofa chair | speaker | stair rail | stairs | stand | stool | storage bin | storage container | storage organizer | stove | structure | stuffed animal | suitcase | table | telephone | tissue box | toaster | toaster oven | toilet | toilet paper | toilet paper dispenser | toilet paper holder | toilet seat cover dispenser | towel | trash bin | trash can | tray | tube | tv | tv stand | vacuum cleaner | vent | wall | wardrobe | washing machine | water bottle | water cooler | water pitcher | whiteboard | window | windowsill |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PTv3 ScanNet200 | 0.393 3 | 0.592 3 | 0.330 2 | 0.216 2 | 0.520 3 | 0.109 4 | 0.108 15 | 0.000 3 | 0.337 2 | 0.000 1 | 0.310 11 | 0.394 8 | 0.494 11 | 0.753 8 | 0.848 2 | 0.256 3 | 0.717 7 | 0.000 3 | 0.842 3 | 0.192 3 | 0.065 3 | 0.449 9 | 0.346 3 | 0.546 6 | 0.190 12 | 0.000 9 | 0.384 6 | 0.000 1 | 0.000 3 | 0.218 3 | 0.505 1 | 0.791 2 | 0.000 1 | 0.136 3 | 0.000 2 | 0.903 2 | 0.073 10 | 0.687 6 | 0.000 7 | 0.168 1 | 0.551 4 | 0.387 7 | 0.941 2 | 0.000 1 | 0.000 2 | 0.397 12 | 0.654 3 | 0.000 10 | 0.714 4 | 0.759 14 | 0.752 7 | 0.118 5 | 0.264 4 | 0.926 2 | 0.000 1 | 0.048 5 | 0.575 4 | 0.000 7 | 0.597 1 | 0.366 2 | 0.755 1 | 0.469 1 | 0.474 2 | 0.798 1 | 0.140 9 | 0.617 2 | 0.692 6 | 0.000 8 | 0.592 2 | 0.971 2 | 0.188 3 | 0.000 1 | 0.133 9 | 0.593 2 | 0.349 1 | 0.650 3 | 0.717 7 | 0.699 3 | 0.455 2 | 0.790 2 | 0.523 3 | 0.636 1 | 0.301 1 | 0.000 1 | 0.622 2 | 0.000 10 | 0.017 14 | 0.259 3 | 0.000 4 | 0.921 4 | 0.337 1 | 0.733 2 | 0.210 3 | 0.514 3 | 0.860 8 | 0.407 1 | 0.000 1 | 0.688 2 | 0.109 7 | 0.000 12 | 0.000 4 | 0.000 1 | 0.151 4 | 0.671 8 | 0.782 1 | 0.115 12 | 0.641 2 | 0.903 2 | 0.349 1 | 0.616 4 | 0.088 5 | 0.832 7 | 0.000 5 | 0.480 2 | 0.000 1 | 0.428 1 | 0.000 3 | 0.497 9 | 0.000 4 | 0.000 7 | 0.000 1 | 0.662 4 | 0.690 2 | 0.612 1 | 0.828 1 | 0.575 1 | 0.000 1 | 0.404 6 | 0.644 1 | 0.325 7 | 0.887 4 | 0.728 1 | 0.009 15 | 0.134 6 | 0.026 16 | 0.000 1 | 0.761 3 | 0.731 3 | 0.172 6 | 0.077 3 | 0.528 7 | 0.727 7 | 0.000 1 | 0.603 4 | 0.220 3 | 0.022 3 | 0.000 1 | 0.740 1 | 0.000 2 | 0.000 1 | 0.661 4 | 0.586 2 | 0.566 3 | 0.436 5 | 0.531 5 | 0.978 2 | 0.457 1 | 0.708 3 | 0.583 5 | 0.141 8 | 0.748 3 | 0.000 1 | 0.026 5 | 0.822 3 | 0.871 4 | 0.879 5 | 0.000 1 | 0.851 2 | 0.405 2 | 0.914 1 | 0.000 1 | 0.682 3 | 0.000 14 | 0.281 3 | 0.738 2 | 0.463 6 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BFANet ScanNet200 | 0.360 4 | 0.553 6 | 0.293 4 | 0.193 4 | 0.483 10 | 0.096 5 | 0.266 5 | 0.000 3 | 0.000 6 | 0.000 1 | 0.298 12 | 0.255 11 | 0.661 1 | 0.810 5 | 0.810 3 | 0.194 9 | 0.785 6 | 0.000 3 | 0.000 16 | 0.161 5 | 0.000 9 | 0.494 8 | 0.382 2 | 0.574 4 | 0.258 4 | 0.000 9 | 0.372 8 | 0.000 1 | 0.000 3 | 0.043 13 | 0.436 7 | 0.000 10 | 0.000 1 | 0.239 2 | 0.000 2 | 0.901 3 | 0.105 1 | 0.689 4 | 0.025 4 | 0.128 2 | 0.614 2 | 0.436 1 | 0.493 16 | 0.000 1 | 0.000 2 | 0.526 4 | 0.546 12 | 0.109 4 | 0.651 13 | 0.953 4 | 0.753 6 | 0.101 6 | 0.143 12 | 0.897 4 | 0.000 1 | 0.431 1 | 0.469 14 | 0.000 7 | 0.522 5 | 0.337 5 | 0.661 6 | 0.459 2 | 0.409 6 | 0.666 4 | 0.102 12 | 0.508 5 | 0.757 4 | 0.000 8 | 0.060 13 | 0.970 3 | 0.497 1 | 0.000 1 | 0.376 2 | 0.511 3 | 0.262 4 | 0.688 2 | 0.921 1 | 0.617 9 | 0.321 11 | 0.590 6 | 0.491 8 | 0.556 3 | 0.000 3 | 0.000 1 | 0.481 4 | 0.093 1 | 0.043 2 | 0.284 2 | 0.000 4 | 0.875 14 | 0.135 8 | 0.669 5 | 0.124 12 | 0.394 6 | 0.849 11 | 0.298 2 | 0.000 1 | 0.476 16 | 0.088 11 | 0.042 7 | 0.000 4 | 0.000 1 | 0.254 3 | 0.653 10 | 0.741 6 | 0.215 1 | 0.573 5 | 0.852 5 | 0.266 9 | 0.654 1 | 0.056 10 | 0.835 5 | 0.000 5 | 0.492 1 | 0.000 1 | 0.000 7 | 0.000 3 | 0.612 8 | 0.000 4 | 0.000 7 | 0.000 1 | 0.616 5 | 0.469 16 | 0.460 4 | 0.698 13 | 0.516 2 | 0.000 1 | 0.378 7 | 0.563 4 | 0.476 5 | 0.863 5 | 0.574 9 | 0.330 6 | 0.000 11 | 0.282 4 | 0.000 1 | 0.760 4 | 0.710 4 | 0.233 1 | 0.000 9 | 0.641 3 | 0.814 2 | 0.000 1 | 0.585 9 | 0.053 10 | 0.000 7 | 0.000 1 | 0.629 9 | 0.000 2 | 0.000 1 | 0.678 3 | 0.528 12 | 0.534 4 | 0.129 13 | 0.596 4 | 0.973 3 | 0.264 11 | 0.772 2 | 0.526 9 | 0.139 10 | 0.707 4 | 0.000 1 | 0.000 12 | 0.764 13 | 0.591 15 | 0.848 6 | 0.000 1 | 0.827 4 | 0.338 3 | 0.806 11 | 0.000 1 | 0.568 9 | 0.151 8 | 0.358 2 | 0.659 9 | 0.510 4 | |||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 11 | 0.556 5 | 0.270 6 | 0.123 13 | 0.519 4 | 0.091 6 | 0.349 3 | 0.000 3 | 0.000 6 | 0.000 1 | 0.339 8 | 0.383 9 | 0.498 10 | 0.833 4 | 0.807 4 | 0.241 4 | 0.584 8 | 0.000 3 | 0.755 6 | 0.124 7 | 0.000 9 | 0.608 2 | 0.330 7 | 0.530 9 | 0.314 2 | 0.000 9 | 0.374 7 | 0.000 1 | 0.000 3 | 0.197 4 | 0.459 6 | 0.000 10 | 0.000 1 | 0.117 5 | 0.000 2 | 0.876 7 | 0.095 2 | 0.682 9 | 0.000 7 | 0.086 7 | 0.518 6 | 0.433 2 | 0.930 4 | 0.000 1 | 0.000 2 | 0.563 3 | 0.542 13 | 0.077 7 | 0.715 3 | 0.858 10 | 0.756 5 | 0.008 16 | 0.171 11 | 0.874 7 | 0.000 1 | 0.039 6 | 0.550 10 | 0.000 7 | 0.545 4 | 0.256 8 | 0.657 8 | 0.453 3 | 0.351 9 | 0.449 9 | 0.213 6 | 0.392 11 | 0.611 10 | 0.000 8 | 0.037 14 | 0.946 6 | 0.138 13 | 0.000 1 | 0.000 12 | 0.063 10 | 0.308 2 | 0.537 7 | 0.796 4 | 0.673 4 | 0.323 10 | 0.392 10 | 0.400 13 | 0.509 7 | 0.000 3 | 0.000 1 | 0.649 1 | 0.000 10 | 0.023 10 | 0.000 11 | 0.000 4 | 0.914 7 | 0.002 15 | 0.506 15 | 0.163 10 | 0.359 8 | 0.872 5 | 0.000 11 | 0.000 1 | 0.623 6 | 0.112 5 | 0.001 11 | 0.000 4 | 0.000 1 | 0.021 8 | 0.753 5 | 0.565 15 | 0.150 4 | 0.579 4 | 0.806 9 | 0.267 8 | 0.616 4 | 0.042 13 | 0.783 12 | 0.000 5 | 0.374 10 | 0.000 1 | 0.000 7 | 0.000 3 | 0.620 7 | 0.000 4 | 0.000 7 | 0.000 1 | 0.572 12 | 0.634 5 | 0.350 9 | 0.792 4 | 0.000 8 | 0.000 1 | 0.376 8 | 0.535 6 | 0.378 6 | 0.855 6 | 0.672 3 | 0.074 12 | 0.000 11 | 0.185 9 | 0.000 1 | 0.727 11 | 0.660 11 | 0.076 16 | 0.000 9 | 0.432 11 | 0.646 10 | 0.000 1 | 0.594 7 | 0.006 12 | 0.000 7 | 0.000 1 | 0.658 6 | 0.000 2 | 0.000 1 | 0.661 4 | 0.549 9 | 0.300 13 | 0.291 9 | 0.045 13 | 0.942 11 | 0.304 7 | 0.600 7 | 0.572 6 | 0.135 12 | 0.695 5 | 0.000 1 | 0.008 9 | 0.793 8 | 0.942 1 | 0.899 2 | 0.000 1 | 0.816 6 | 0.181 7 | 0.897 2 | 0.000 1 | 0.679 4 | 0.223 6 | 0.264 4 | 0.691 5 | 0.345 11 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ALS-MinkowskiNet | 0.414 1 | 0.610 2 | 0.322 3 | 0.271 1 | 0.542 2 | 0.153 2 | 0.159 10 | 0.000 3 | 0.000 6 | 0.000 1 | 0.404 4 | 0.503 3 | 0.532 6 | 0.672 16 | 0.804 5 | 0.285 1 | 0.888 1 | 0.000 3 | 0.900 1 | 0.226 1 | 0.087 2 | 0.598 3 | 0.342 4 | 0.671 1 | 0.217 9 | 0.087 3 | 0.449 3 | 0.000 1 | 0.000 3 | 0.253 2 | 0.477 5 | 1.000 1 | 0.000 1 | 0.118 4 | 0.000 2 | 0.905 1 | 0.071 11 | 0.710 2 | 0.076 1 | 0.047 15 | 0.665 1 | 0.376 8 | 0.981 1 | 0.000 1 | 0.000 2 | 0.466 6 | 0.632 7 | 0.113 3 | 0.769 1 | 0.956 3 | 0.795 1 | 0.031 9 | 0.314 1 | 0.936 1 | 0.000 1 | 0.390 2 | 0.601 1 | 0.000 7 | 0.458 7 | 0.366 2 | 0.719 3 | 0.440 4 | 0.564 1 | 0.699 3 | 0.314 1 | 0.464 6 | 0.784 2 | 0.200 1 | 0.283 5 | 0.973 1 | 0.142 8 | 0.000 1 | 0.250 7 | 0.285 5 | 0.220 5 | 0.718 1 | 0.752 5 | 0.723 2 | 0.460 1 | 0.248 15 | 0.475 9 | 0.463 13 | 0.000 3 | 0.000 1 | 0.446 7 | 0.021 4 | 0.025 9 | 0.285 1 | 0.000 4 | 0.972 1 | 0.149 7 | 0.769 1 | 0.230 2 | 0.535 2 | 0.879 2 | 0.252 6 | 0.000 1 | 0.693 1 | 0.129 2 | 0.000 12 | 0.000 4 | 0.000 1 | 0.447 2 | 0.958 1 | 0.662 9 | 0.159 2 | 0.598 3 | 0.780 11 | 0.344 2 | 0.646 2 | 0.106 4 | 0.893 2 | 0.135 2 | 0.455 3 | 0.000 1 | 0.194 3 | 0.259 1 | 0.726 3 | 0.475 3 | 0.000 7 | 0.000 1 | 0.741 1 | 0.865 1 | 0.571 2 | 0.817 3 | 0.445 3 | 0.000 1 | 0.506 2 | 0.630 2 | 0.230 11 | 0.916 2 | 0.728 1 | 0.635 1 | 1.000 1 | 0.252 5 | 0.000 1 | 0.804 1 | 0.697 5 | 0.137 11 | 0.043 6 | 0.717 1 | 0.807 3 | 0.000 1 | 0.510 13 | 0.245 1 | 0.000 7 | 0.000 1 | 0.709 3 | 0.000 2 | 0.000 1 | 0.703 2 | 0.572 3 | 0.646 1 | 0.223 10 | 0.531 5 | 0.984 1 | 0.397 2 | 0.813 1 | 0.798 1 | 0.135 12 | 0.800 1 | 0.000 1 | 0.097 2 | 0.832 2 | 0.752 8 | 0.842 7 | 0.000 1 | 0.852 1 | 0.149 9 | 0.846 9 | 0.000 1 | 0.666 5 | 0.359 4 | 0.252 7 | 0.777 1 | 0.690 2 | |||||||||||||||||||||||||||||
DITR | 0.409 2 | 0.616 1 | 0.351 1 | 0.215 3 | 0.651 1 | 0.238 1 | 0.400 2 | 0.000 3 | 0.340 1 | 0.000 1 | 0.534 2 | 0.476 4 | 0.585 2 | 0.687 15 | 0.853 1 | 0.143 12 | 0.854 2 | 0.000 3 | 0.865 2 | 0.167 4 | 0.000 9 | 0.175 16 | 0.573 1 | 0.617 2 | 0.372 1 | 0.362 1 | 0.591 1 | 0.000 1 | 0.000 3 | 0.330 1 | 0.494 2 | 0.247 9 | 0.000 1 | 0.385 1 | 0.000 2 | 0.878 6 | 0.037 13 | 0.791 1 | 0.053 2 | 0.118 3 | 0.479 11 | 0.429 4 | 0.940 3 | 0.000 1 | 0.000 2 | 0.461 7 | 0.562 10 | 0.093 5 | 0.628 14 | 0.991 1 | 0.762 2 | 0.135 3 | 0.270 3 | 0.917 3 | 0.000 1 | 0.140 4 | 0.597 2 | 0.000 7 | 0.361 11 | 0.375 1 | 0.730 2 | 0.431 5 | 0.459 3 | 0.410 12 | 0.008 15 | 0.656 1 | 0.814 1 | 0.036 6 | 0.554 3 | 0.947 5 | 0.139 10 | 0.000 1 | 0.263 5 | 0.896 1 | 0.191 8 | 0.615 4 | 0.839 3 | 0.757 1 | 0.399 5 | 0.877 1 | 0.504 5 | 0.524 6 | 0.000 3 | 0.000 1 | 0.587 3 | 0.000 10 | 0.022 11 | 0.077 9 | 0.921 1 | 0.928 2 | 0.132 9 | 0.670 4 | 0.759 1 | 0.652 1 | 0.862 7 | 0.091 10 | 0.000 1 | 0.662 3 | 0.072 15 | 0.000 12 | 0.000 4 | 0.000 1 | 0.496 1 | 0.852 2 | 0.752 4 | 0.152 3 | 0.743 1 | 0.953 1 | 0.301 3 | 0.625 3 | 0.053 11 | 0.913 1 | 0.399 1 | 0.452 4 | 0.000 1 | 0.000 7 | 0.000 3 | 0.742 2 | 0.000 4 | 0.000 7 | 0.000 1 | 0.694 2 | 0.643 4 | 0.444 6 | 0.784 7 | 0.000 8 | 0.000 1 | 0.571 1 | 0.614 3 | 0.491 4 | 0.938 1 | 0.559 10 | 0.357 5 | 0.107 7 | 0.404 1 | 0.000 1 | 0.796 2 | 0.688 6 | 0.148 8 | 0.186 1 | 0.629 4 | 0.827 1 | 0.000 1 | 0.558 11 | 0.198 4 | 0.000 7 | 0.000 1 | 0.723 2 | 0.000 2 | 0.000 1 | 0.833 1 | 0.619 1 | 0.609 2 | 0.478 4 | 0.617 1 | 0.959 4 | 0.370 3 | 0.597 8 | 0.737 2 | 0.191 5 | 0.752 2 | 0.000 1 | 0.118 1 | 0.853 1 | 0.925 2 | 0.670 13 | 0.000 1 | 0.831 3 | 0.000 16 | 0.873 3 | 0.000 1 | 0.699 1 | 0.005 11 | 0.360 1 | 0.723 3 | 0.235 12 | |||||||||||||||||||||||||||||
PonderV2 ScanNet200 | 0.346 5 | 0.552 7 | 0.270 7 | 0.175 8 | 0.497 7 | 0.070 11 | 0.239 6 | 0.000 3 | 0.000 6 | 0.000 1 | 0.232 16 | 0.412 7 | 0.584 3 | 0.842 3 | 0.804 5 | 0.212 6 | 0.540 9 | 0.000 3 | 0.433 15 | 0.106 9 | 0.000 9 | 0.590 4 | 0.290 11 | 0.548 5 | 0.243 6 | 0.000 9 | 0.356 10 | 0.000 1 | 0.000 3 | 0.062 9 | 0.398 12 | 0.441 8 | 0.000 1 | 0.104 9 | 0.000 2 | 0.888 4 | 0.076 9 | 0.682 9 | 0.030 3 | 0.094 6 | 0.491 10 | 0.351 12 | 0.869 9 | 0.000 1 | 0.063 1 | 0.403 11 | 0.700 2 | 0.000 10 | 0.660 12 | 0.881 8 | 0.761 3 | 0.050 8 | 0.186 9 | 0.852 12 | 0.000 1 | 0.007 8 | 0.570 7 | 0.100 2 | 0.565 2 | 0.326 6 | 0.641 9 | 0.431 5 | 0.290 13 | 0.621 5 | 0.259 3 | 0.408 10 | 0.622 9 | 0.125 2 | 0.082 11 | 0.950 4 | 0.179 4 | 0.000 1 | 0.263 5 | 0.424 4 | 0.193 7 | 0.558 6 | 0.880 2 | 0.545 12 | 0.375 6 | 0.727 3 | 0.445 11 | 0.499 8 | 0.000 3 | 0.000 1 | 0.475 6 | 0.002 8 | 0.034 5 | 0.083 8 | 0.000 4 | 0.924 3 | 0.290 3 | 0.636 6 | 0.115 13 | 0.400 5 | 0.874 4 | 0.186 8 | 0.000 1 | 0.611 7 | 0.128 3 | 0.113 2 | 0.000 4 | 0.000 1 | 0.000 10 | 0.584 11 | 0.636 10 | 0.103 13 | 0.385 9 | 0.843 6 | 0.283 4 | 0.603 6 | 0.080 6 | 0.825 9 | 0.000 5 | 0.377 9 | 0.000 1 | 0.000 7 | 0.000 3 | 0.457 10 | 0.000 4 | 0.000 7 | 0.000 1 | 0.574 11 | 0.608 8 | 0.481 3 | 0.792 4 | 0.394 4 | 0.000 1 | 0.357 9 | 0.503 10 | 0.261 10 | 0.817 12 | 0.504 13 | 0.304 7 | 0.472 4 | 0.115 10 | 0.000 1 | 0.750 6 | 0.677 8 | 0.202 2 | 0.000 9 | 0.509 8 | 0.729 6 | 0.000 1 | 0.519 12 | 0.000 13 | 0.000 7 | 0.000 1 | 0.620 11 | 0.000 2 | 0.000 1 | 0.660 6 | 0.560 6 | 0.486 5 | 0.384 7 | 0.346 9 | 0.952 5 | 0.247 13 | 0.667 4 | 0.436 11 | 0.269 3 | 0.691 6 | 0.000 1 | 0.010 7 | 0.787 9 | 0.889 3 | 0.880 4 | 0.000 1 | 0.810 7 | 0.336 4 | 0.860 7 | 0.000 1 | 0.606 8 | 0.009 9 | 0.248 8 | 0.681 6 | 0.392 8 | |||||||||||||||||||||||||||||
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L3DETR-ScanNet_200 | 0.336 7 | 0.533 10 | 0.279 5 | 0.155 9 | 0.508 5 | 0.073 10 | 0.101 16 | 0.000 3 | 0.058 5 | 0.000 1 | 0.294 13 | 0.233 13 | 0.548 4 | 0.927 1 | 0.788 10 | 0.264 2 | 0.463 10 | 0.000 3 | 0.638 11 | 0.098 12 | 0.014 7 | 0.411 11 | 0.226 12 | 0.525 10 | 0.225 8 | 0.010 7 | 0.397 5 | 0.000 1 | 0.000 3 | 0.192 5 | 0.380 13 | 0.598 4 | 0.000 1 | 0.117 5 | 0.000 2 | 0.883 5 | 0.082 7 | 0.689 4 | 0.000 7 | 0.032 16 | 0.549 5 | 0.417 5 | 0.910 5 | 0.000 1 | 0.000 2 | 0.448 8 | 0.613 9 | 0.000 10 | 0.697 6 | 0.960 2 | 0.759 4 | 0.158 2 | 0.293 2 | 0.883 6 | 0.000 1 | 0.312 3 | 0.583 3 | 0.079 4 | 0.422 10 | 0.068 16 | 0.660 7 | 0.418 7 | 0.298 11 | 0.430 10 | 0.114 10 | 0.526 4 | 0.776 3 | 0.051 3 | 0.679 1 | 0.946 6 | 0.152 6 | 0.000 1 | 0.183 8 | 0.000 14 | 0.211 6 | 0.511 9 | 0.409 15 | 0.565 11 | 0.355 7 | 0.448 8 | 0.512 4 | 0.557 2 | 0.000 3 | 0.000 1 | 0.420 8 | 0.000 10 | 0.007 16 | 0.104 6 | 0.000 4 | 0.125 16 | 0.330 2 | 0.514 14 | 0.146 11 | 0.321 12 | 0.860 8 | 0.174 9 | 0.000 1 | 0.629 5 | 0.075 12 | 0.000 12 | 0.000 4 | 0.000 1 | 0.002 9 | 0.671 8 | 0.712 7 | 0.141 6 | 0.339 11 | 0.856 4 | 0.261 11 | 0.529 9 | 0.067 8 | 0.835 5 | 0.000 5 | 0.369 11 | 0.000 1 | 0.259 2 | 0.000 3 | 0.629 5 | 0.000 4 | 0.487 1 | 0.000 1 | 0.579 10 | 0.646 3 | 0.107 16 | 0.720 10 | 0.122 6 | 0.000 1 | 0.333 13 | 0.505 9 | 0.303 9 | 0.908 3 | 0.503 14 | 0.565 2 | 0.074 8 | 0.324 2 | 0.000 1 | 0.740 7 | 0.661 10 | 0.109 13 | 0.000 9 | 0.427 12 | 0.563 16 | 0.000 1 | 0.579 10 | 0.108 7 | 0.000 7 | 0.000 1 | 0.664 5 | 0.000 2 | 0.000 1 | 0.641 7 | 0.539 10 | 0.416 6 | 0.515 2 | 0.256 10 | 0.940 12 | 0.312 5 | 0.209 16 | 0.620 3 | 0.138 11 | 0.636 10 | 0.000 1 | 0.000 12 | 0.775 12 | 0.861 5 | 0.765 11 | 0.000 1 | 0.801 9 | 0.119 11 | 0.860 7 | 0.000 1 | 0.687 2 | 0.001 13 | 0.192 13 | 0.679 8 | 0.699 1 | |||||||||||||||||||||||||||||
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AWCS | 0.305 13 | 0.508 13 | 0.225 13 | 0.142 10 | 0.463 13 | 0.063 12 | 0.195 8 | 0.000 3 | 0.000 6 | 0.000 1 | 0.467 3 | 0.551 1 | 0.504 8 | 0.773 6 | 0.764 13 | 0.142 13 | 0.029 16 | 0.000 3 | 0.626 12 | 0.100 10 | 0.000 9 | 0.360 12 | 0.179 14 | 0.507 12 | 0.137 14 | 0.006 8 | 0.300 11 | 0.000 1 | 0.000 3 | 0.172 7 | 0.364 14 | 0.512 7 | 0.000 1 | 0.056 13 | 0.000 2 | 0.865 13 | 0.093 4 | 0.634 16 | 0.000 7 | 0.071 12 | 0.396 14 | 0.296 15 | 0.876 8 | 0.000 1 | 0.000 2 | 0.373 13 | 0.436 15 | 0.063 9 | 0.749 2 | 0.877 9 | 0.721 11 | 0.131 4 | 0.124 13 | 0.804 14 | 0.000 1 | 0.000 10 | 0.515 11 | 0.010 6 | 0.452 9 | 0.252 9 | 0.578 13 | 0.417 8 | 0.179 16 | 0.484 8 | 0.171 7 | 0.337 13 | 0.606 11 | 0.000 8 | 0.115 9 | 0.937 13 | 0.142 8 | 0.000 1 | 0.008 11 | 0.000 14 | 0.157 15 | 0.484 13 | 0.402 16 | 0.501 14 | 0.339 8 | 0.553 7 | 0.529 2 | 0.478 12 | 0.000 3 | 0.000 1 | 0.404 9 | 0.001 9 | 0.022 11 | 0.077 9 | 0.000 4 | 0.894 12 | 0.219 6 | 0.628 7 | 0.093 14 | 0.305 13 | 0.886 1 | 0.233 7 | 0.000 1 | 0.603 8 | 0.112 5 | 0.023 9 | 0.000 4 | 0.000 1 | 0.000 10 | 0.741 6 | 0.664 8 | 0.097 14 | 0.253 13 | 0.782 10 | 0.264 10 | 0.523 10 | 0.154 1 | 0.707 15 | 0.000 5 | 0.411 7 | 0.000 1 | 0.000 7 | 0.000 3 | 0.332 15 | 0.000 4 | 0.000 7 | 0.000 1 | 0.602 6 | 0.595 9 | 0.185 12 | 0.656 15 | 0.159 5 | 0.000 1 | 0.355 10 | 0.424 14 | 0.154 14 | 0.729 14 | 0.516 11 | 0.220 9 | 0.620 3 | 0.084 12 | 0.000 1 | 0.707 13 | 0.651 12 | 0.173 5 | 0.014 8 | 0.381 16 | 0.582 14 | 0.000 1 | 0.619 2 | 0.049 11 | 0.000 7 | 0.000 1 | 0.702 4 | 0.000 2 | 0.000 1 | 0.302 15 | 0.489 14 | 0.317 12 | 0.334 8 | 0.392 7 | 0.922 13 | 0.254 12 | 0.533 13 | 0.394 12 | 0.129 14 | 0.613 14 | 0.000 1 | 0.000 12 | 0.820 5 | 0.649 10 | 0.749 12 | 0.000 1 | 0.782 13 | 0.282 6 | 0.863 5 | 0.000 1 | 0.288 15 | 0.006 10 | 0.220 10 | 0.633 13 | 0.542 3 | |||||||||||||||||||||||||||||
OctFormer ScanNet200 | 0.326 12 | 0.539 9 | 0.265 9 | 0.131 11 | 0.499 6 | 0.110 3 | 0.522 1 | 0.000 3 | 0.000 6 | 0.000 1 | 0.318 10 | 0.427 6 | 0.455 14 | 0.743 10 | 0.765 12 | 0.175 10 | 0.842 3 | 0.000 3 | 0.828 4 | 0.204 2 | 0.033 6 | 0.429 10 | 0.335 5 | 0.601 3 | 0.312 3 | 0.000 9 | 0.357 9 | 0.000 1 | 0.000 3 | 0.047 10 | 0.423 8 | 0.000 10 | 0.000 1 | 0.105 8 | 0.000 2 | 0.873 9 | 0.079 8 | 0.670 12 | 0.000 7 | 0.117 4 | 0.471 13 | 0.432 3 | 0.829 10 | 0.000 1 | 0.000 2 | 0.584 2 | 0.417 16 | 0.089 6 | 0.684 8 | 0.837 11 | 0.705 15 | 0.021 12 | 0.178 10 | 0.892 5 | 0.000 1 | 0.028 7 | 0.505 12 | 0.000 7 | 0.457 8 | 0.200 13 | 0.662 4 | 0.412 9 | 0.244 14 | 0.496 7 | 0.000 16 | 0.451 7 | 0.626 8 | 0.000 8 | 0.102 10 | 0.943 9 | 0.138 13 | 0.000 1 | 0.000 12 | 0.149 7 | 0.291 3 | 0.534 8 | 0.722 6 | 0.632 6 | 0.331 9 | 0.253 14 | 0.453 10 | 0.487 11 | 0.000 3 | 0.000 1 | 0.479 5 | 0.000 10 | 0.022 11 | 0.000 11 | 0.000 4 | 0.900 10 | 0.128 10 | 0.684 3 | 0.164 9 | 0.413 4 | 0.854 10 | 0.000 11 | 0.000 1 | 0.512 15 | 0.074 13 | 0.003 10 | 0.000 4 | 0.000 1 | 0.000 10 | 0.469 14 | 0.613 12 | 0.132 8 | 0.529 7 | 0.871 3 | 0.227 15 | 0.582 7 | 0.026 16 | 0.787 11 | 0.000 5 | 0.339 14 | 0.000 1 | 0.000 7 | 0.000 3 | 0.626 6 | 0.000 4 | 0.029 6 | 0.000 1 | 0.587 8 | 0.612 7 | 0.411 7 | 0.724 9 | 0.000 8 | 0.000 1 | 0.407 5 | 0.552 5 | 0.513 3 | 0.849 9 | 0.655 4 | 0.408 3 | 0.000 11 | 0.296 3 | 0.000 1 | 0.686 14 | 0.645 13 | 0.145 9 | 0.022 7 | 0.414 13 | 0.633 11 | 0.000 1 | 0.637 1 | 0.224 2 | 0.000 7 | 0.000 1 | 0.650 7 | 0.000 2 | 0.000 1 | 0.622 8 | 0.535 11 | 0.343 11 | 0.483 3 | 0.230 12 | 0.943 10 | 0.289 9 | 0.618 6 | 0.596 4 | 0.140 9 | 0.679 7 | 0.000 1 | 0.022 6 | 0.783 10 | 0.620 11 | 0.906 1 | 0.000 1 | 0.806 8 | 0.137 10 | 0.865 4 | 0.000 1 | 0.378 12 | 0.000 14 | 0.168 14 | 0.680 7 | 0.227 13 | |||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CeCo | 0.340 6 | 0.551 8 | 0.247 12 | 0.181 5 | 0.475 12 | 0.057 14 | 0.142 11 | 0.000 3 | 0.000 6 | 0.000 1 | 0.387 5 | 0.463 5 | 0.499 9 | 0.924 2 | 0.774 11 | 0.213 5 | 0.257 12 | 0.000 3 | 0.546 14 | 0.100 10 | 0.006 8 | 0.615 1 | 0.177 16 | 0.534 7 | 0.246 5 | 0.000 9 | 0.400 4 | 0.000 1 | 0.338 1 | 0.006 15 | 0.484 4 | 0.609 3 | 0.000 1 | 0.083 10 | 0.000 2 | 0.873 9 | 0.089 5 | 0.661 13 | 0.000 7 | 0.048 14 | 0.560 3 | 0.408 6 | 0.892 7 | 0.000 1 | 0.000 2 | 0.586 1 | 0.616 8 | 0.000 10 | 0.692 7 | 0.900 7 | 0.721 11 | 0.162 1 | 0.228 5 | 0.860 10 | 0.000 1 | 0.000 10 | 0.575 4 | 0.083 3 | 0.550 3 | 0.347 4 | 0.624 12 | 0.410 10 | 0.360 8 | 0.740 2 | 0.109 11 | 0.321 14 | 0.660 7 | 0.000 8 | 0.121 8 | 0.939 12 | 0.143 7 | 0.000 1 | 0.400 1 | 0.003 12 | 0.190 10 | 0.564 5 | 0.652 9 | 0.615 10 | 0.421 3 | 0.304 13 | 0.579 1 | 0.547 4 | 0.000 3 | 0.000 1 | 0.296 13 | 0.000 10 | 0.030 8 | 0.096 7 | 0.000 4 | 0.916 5 | 0.037 12 | 0.551 11 | 0.171 8 | 0.376 7 | 0.865 6 | 0.286 3 | 0.000 1 | 0.633 4 | 0.102 10 | 0.027 8 | 0.011 3 | 0.000 1 | 0.000 10 | 0.474 13 | 0.742 5 | 0.133 7 | 0.311 12 | 0.824 8 | 0.242 12 | 0.503 13 | 0.068 7 | 0.828 8 | 0.000 5 | 0.429 6 | 0.000 1 | 0.063 4 | 0.000 3 | 0.781 1 | 0.000 4 | 0.000 7 | 0.000 1 | 0.665 3 | 0.633 6 | 0.450 5 | 0.818 2 | 0.000 8 | 0.000 1 | 0.429 4 | 0.532 7 | 0.226 12 | 0.825 10 | 0.510 12 | 0.377 4 | 0.709 2 | 0.079 13 | 0.000 1 | 0.753 5 | 0.683 7 | 0.102 15 | 0.063 4 | 0.401 15 | 0.620 13 | 0.000 1 | 0.619 2 | 0.000 13 | 0.000 7 | 0.000 1 | 0.595 12 | 0.000 2 | 0.000 1 | 0.345 13 | 0.564 5 | 0.411 7 | 0.603 1 | 0.384 8 | 0.945 9 | 0.266 10 | 0.643 5 | 0.367 13 | 0.304 1 | 0.663 9 | 0.000 1 | 0.010 7 | 0.726 14 | 0.767 7 | 0.898 3 | 0.000 1 | 0.784 12 | 0.435 1 | 0.861 6 | 0.000 1 | 0.447 11 | 0.000 14 | 0.257 6 | 0.656 10 | 0.377 9 | |||||||||||||||||||||||||||||
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
IMFSegNet | 0.334 8 | 0.532 12 | 0.251 10 | 0.179 6 | 0.486 9 | 0.041 15 | 0.139 12 | 0.003 1 | 0.283 3 | 0.000 1 | 0.274 14 | 0.191 14 | 0.457 13 | 0.704 13 | 0.795 7 | 0.197 8 | 0.830 5 | 0.000 3 | 0.710 8 | 0.055 15 | 0.064 4 | 0.518 5 | 0.305 9 | 0.458 16 | 0.216 11 | 0.027 5 | 0.284 12 | 0.000 1 | 0.000 3 | 0.044 11 | 0.406 9 | 0.561 5 | 0.000 1 | 0.080 11 | 0.000 2 | 0.873 9 | 0.021 14 | 0.683 8 | 0.000 7 | 0.076 8 | 0.494 9 | 0.363 9 | 0.648 15 | 0.000 1 | 0.000 2 | 0.425 9 | 0.649 4 | 0.000 10 | 0.668 11 | 0.908 6 | 0.740 10 | 0.010 14 | 0.206 7 | 0.862 9 | 0.000 1 | 0.000 10 | 0.560 8 | 0.000 7 | 0.359 12 | 0.237 11 | 0.631 11 | 0.408 11 | 0.411 4 | 0.322 14 | 0.246 4 | 0.439 9 | 0.599 12 | 0.047 4 | 0.213 6 | 0.940 10 | 0.139 10 | 0.000 1 | 0.369 4 | 0.124 9 | 0.188 11 | 0.495 10 | 0.624 10 | 0.626 7 | 0.320 13 | 0.595 4 | 0.495 7 | 0.496 10 | 0.000 3 | 0.000 1 | 0.340 11 | 0.014 5 | 0.032 6 | 0.135 5 | 0.000 4 | 0.903 8 | 0.277 5 | 0.612 8 | 0.196 6 | 0.344 11 | 0.848 13 | 0.260 4 | 0.000 1 | 0.574 12 | 0.073 14 | 0.062 4 | 0.000 4 | 0.000 1 | 0.091 5 | 0.839 3 | 0.776 2 | 0.123 11 | 0.392 8 | 0.756 12 | 0.274 5 | 0.518 11 | 0.029 15 | 0.842 3 | 0.000 5 | 0.357 12 | 0.000 1 | 0.035 6 | 0.000 3 | 0.444 11 | 0.793 1 | 0.245 4 | 0.000 1 | 0.512 15 | 0.512 14 | 0.159 14 | 0.713 12 | 0.000 8 | 0.000 1 | 0.336 12 | 0.484 11 | 0.569 2 | 0.852 8 | 0.615 6 | 0.120 11 | 0.068 10 | 0.228 7 | 0.000 1 | 0.733 9 | 0.773 1 | 0.190 4 | 0.000 9 | 0.608 5 | 0.792 4 | 0.000 1 | 0.597 6 | 0.000 13 | 0.025 2 | 0.000 1 | 0.573 16 | 0.000 2 | 0.000 1 | 0.508 10 | 0.555 7 | 0.363 9 | 0.139 11 | 0.610 2 | 0.947 8 | 0.305 6 | 0.594 9 | 0.527 8 | 0.009 16 | 0.633 12 | 0.000 1 | 0.060 3 | 0.820 5 | 0.604 14 | 0.799 8 | 0.000 1 | 0.799 10 | 0.034 13 | 0.784 12 | 0.000 1 | 0.618 6 | 0.424 1 | 0.134 15 | 0.646 12 | 0.214 14 | |||||||||||||||||||||||||||||
GSTran | 0.334 9 | 0.533 11 | 0.250 11 | 0.179 7 | 0.487 8 | 0.041 15 | 0.139 12 | 0.003 1 | 0.273 4 | 0.000 1 | 0.273 15 | 0.189 15 | 0.465 12 | 0.704 13 | 0.794 8 | 0.198 7 | 0.831 4 | 0.000 3 | 0.712 7 | 0.055 15 | 0.063 5 | 0.518 5 | 0.306 8 | 0.459 15 | 0.217 9 | 0.028 4 | 0.282 13 | 0.000 1 | 0.000 3 | 0.044 11 | 0.405 10 | 0.558 6 | 0.000 1 | 0.080 11 | 0.000 2 | 0.873 9 | 0.020 15 | 0.684 7 | 0.000 7 | 0.075 11 | 0.496 8 | 0.363 9 | 0.651 14 | 0.000 1 | 0.000 2 | 0.425 9 | 0.648 5 | 0.000 10 | 0.669 10 | 0.914 5 | 0.741 9 | 0.009 15 | 0.200 8 | 0.864 8 | 0.000 1 | 0.000 10 | 0.560 8 | 0.000 7 | 0.357 13 | 0.233 12 | 0.633 10 | 0.408 11 | 0.411 4 | 0.320 15 | 0.242 5 | 0.440 8 | 0.598 13 | 0.047 4 | 0.205 7 | 0.940 10 | 0.139 10 | 0.000 1 | 0.372 3 | 0.138 8 | 0.191 8 | 0.495 10 | 0.618 12 | 0.624 8 | 0.321 11 | 0.595 4 | 0.496 6 | 0.499 8 | 0.000 3 | 0.000 1 | 0.340 11 | 0.014 5 | 0.032 6 | 0.136 4 | 0.000 4 | 0.903 8 | 0.279 4 | 0.601 9 | 0.198 4 | 0.345 10 | 0.849 11 | 0.260 4 | 0.000 1 | 0.573 13 | 0.072 15 | 0.060 5 | 0.000 4 | 0.000 1 | 0.089 6 | 0.838 4 | 0.775 3 | 0.125 10 | 0.381 10 | 0.752 13 | 0.274 5 | 0.517 12 | 0.032 14 | 0.841 4 | 0.000 5 | 0.354 13 | 0.000 1 | 0.047 5 | 0.000 3 | 0.439 12 | 0.787 2 | 0.252 3 | 0.000 1 | 0.512 15 | 0.507 15 | 0.158 15 | 0.717 11 | 0.000 8 | 0.000 1 | 0.337 11 | 0.483 12 | 0.570 1 | 0.853 7 | 0.614 7 | 0.121 10 | 0.070 9 | 0.229 6 | 0.000 1 | 0.732 10 | 0.773 1 | 0.193 3 | 0.000 9 | 0.606 6 | 0.791 5 | 0.000 1 | 0.593 8 | 0.000 13 | 0.010 5 | 0.000 1 | 0.574 15 | 0.000 2 | 0.000 1 | 0.507 11 | 0.554 8 | 0.361 10 | 0.136 12 | 0.608 3 | 0.948 7 | 0.304 7 | 0.593 10 | 0.533 7 | 0.011 15 | 0.634 11 | 0.000 1 | 0.060 3 | 0.821 4 | 0.613 12 | 0.797 9 | 0.000 1 | 0.799 10 | 0.036 12 | 0.782 13 | 0.000 1 | 0.609 7 | 0.423 2 | 0.133 16 | 0.647 11 | 0.213 15 | |||||||||||||||||||||||||||||
OA-CNN-L_ScanNet200 | 0.333 10 | 0.558 4 | 0.269 8 | 0.124 12 | 0.448 14 | 0.080 8 | 0.272 4 | 0.000 3 | 0.000 6 | 0.000 1 | 0.342 7 | 0.515 2 | 0.524 7 | 0.713 12 | 0.789 9 | 0.158 11 | 0.384 11 | 0.000 3 | 0.806 5 | 0.125 6 | 0.000 9 | 0.496 7 | 0.332 6 | 0.498 13 | 0.227 7 | 0.024 6 | 0.474 2 | 0.000 1 | 0.003 2 | 0.071 8 | 0.487 3 | 0.000 10 | 0.000 1 | 0.110 7 | 0.000 2 | 0.876 7 | 0.013 16 | 0.703 3 | 0.000 7 | 0.076 8 | 0.473 12 | 0.355 11 | 0.906 6 | 0.000 1 | 0.000 2 | 0.476 5 | 0.706 1 | 0.000 10 | 0.672 9 | 0.835 12 | 0.748 8 | 0.015 13 | 0.223 6 | 0.860 10 | 0.000 1 | 0.000 10 | 0.572 6 | 0.000 7 | 0.509 6 | 0.313 7 | 0.662 4 | 0.398 13 | 0.396 7 | 0.411 11 | 0.276 2 | 0.527 3 | 0.711 5 | 0.000 8 | 0.076 12 | 0.946 6 | 0.166 5 | 0.000 1 | 0.022 10 | 0.160 6 | 0.183 12 | 0.493 12 | 0.699 8 | 0.637 5 | 0.403 4 | 0.330 12 | 0.406 12 | 0.526 5 | 0.024 2 | 0.000 1 | 0.392 10 | 0.000 10 | 0.016 15 | 0.000 11 | 0.196 3 | 0.915 6 | 0.112 11 | 0.557 10 | 0.197 5 | 0.352 9 | 0.877 3 | 0.000 11 | 0.000 1 | 0.592 11 | 0.103 9 | 0.000 12 | 0.067 1 | 0.000 1 | 0.089 6 | 0.735 7 | 0.625 11 | 0.130 9 | 0.568 6 | 0.836 7 | 0.271 7 | 0.534 8 | 0.043 12 | 0.799 10 | 0.001 4 | 0.445 5 | 0.000 1 | 0.000 7 | 0.024 2 | 0.661 4 | 0.000 4 | 0.262 2 | 0.000 1 | 0.591 7 | 0.517 12 | 0.373 8 | 0.788 6 | 0.021 7 | 0.000 1 | 0.455 3 | 0.517 8 | 0.320 8 | 0.823 11 | 0.200 16 | 0.001 16 | 0.150 5 | 0.100 11 | 0.000 1 | 0.736 8 | 0.668 9 | 0.103 14 | 0.052 5 | 0.662 2 | 0.720 8 | 0.000 1 | 0.602 5 | 0.112 6 | 0.002 6 | 0.000 1 | 0.637 8 | 0.000 2 | 0.000 1 | 0.621 9 | 0.569 4 | 0.398 8 | 0.412 6 | 0.234 11 | 0.949 6 | 0.363 4 | 0.492 14 | 0.495 10 | 0.251 4 | 0.665 8 | 0.000 1 | 0.001 11 | 0.805 7 | 0.833 6 | 0.794 10 | 0.000 1 | 0.821 5 | 0.314 5 | 0.843 10 | 0.000 1 | 0.560 10 | 0.245 5 | 0.262 5 | 0.713 4 | 0.370 10 | |||||||||||||||||||||||||||||
LGround | 0.272 14 | 0.485 14 | 0.184 14 | 0.106 14 | 0.476 11 | 0.077 9 | 0.218 7 | 0.000 3 | 0.000 6 | 0.000 1 | 0.547 1 | 0.295 10 | 0.540 5 | 0.746 9 | 0.745 14 | 0.058 15 | 0.112 15 | 0.005 1 | 0.658 10 | 0.077 14 | 0.000 9 | 0.322 13 | 0.178 15 | 0.512 11 | 0.190 12 | 0.199 2 | 0.277 14 | 0.000 1 | 0.000 3 | 0.173 6 | 0.399 11 | 0.000 10 | 0.000 1 | 0.039 15 | 0.000 2 | 0.858 14 | 0.085 6 | 0.676 11 | 0.002 5 | 0.103 5 | 0.498 7 | 0.323 13 | 0.703 11 | 0.000 1 | 0.000 2 | 0.296 14 | 0.549 11 | 0.216 1 | 0.702 5 | 0.768 13 | 0.718 13 | 0.028 10 | 0.092 15 | 0.786 15 | 0.000 1 | 0.000 10 | 0.453 15 | 0.022 5 | 0.251 16 | 0.252 9 | 0.572 14 | 0.348 14 | 0.321 10 | 0.514 6 | 0.063 13 | 0.279 15 | 0.552 14 | 0.000 8 | 0.019 15 | 0.932 14 | 0.132 15 | 0.000 1 | 0.000 12 | 0.000 14 | 0.156 16 | 0.457 14 | 0.623 11 | 0.518 13 | 0.265 15 | 0.358 11 | 0.381 14 | 0.395 14 | 0.000 3 | 0.000 1 | 0.127 16 | 0.012 7 | 0.051 1 | 0.000 11 | 0.000 4 | 0.886 13 | 0.014 13 | 0.437 16 | 0.179 7 | 0.244 14 | 0.826 14 | 0.000 11 | 0.000 1 | 0.599 9 | 0.136 1 | 0.085 3 | 0.000 4 | 0.000 1 | 0.000 10 | 0.565 12 | 0.612 13 | 0.143 5 | 0.207 14 | 0.566 14 | 0.232 14 | 0.446 14 | 0.127 2 | 0.708 14 | 0.000 5 | 0.384 8 | 0.000 1 | 0.000 7 | 0.000 3 | 0.402 13 | 0.000 4 | 0.059 5 | 0.000 1 | 0.525 14 | 0.566 10 | 0.229 11 | 0.659 14 | 0.000 8 | 0.000 1 | 0.265 14 | 0.446 13 | 0.147 15 | 0.720 16 | 0.597 8 | 0.066 13 | 0.000 11 | 0.187 8 | 0.000 1 | 0.726 12 | 0.467 16 | 0.134 12 | 0.000 9 | 0.413 14 | 0.629 12 | 0.000 1 | 0.363 15 | 0.055 9 | 0.022 3 | 0.000 1 | 0.626 10 | 0.000 2 | 0.000 1 | 0.323 14 | 0.479 16 | 0.154 15 | 0.117 14 | 0.028 15 | 0.901 14 | 0.243 14 | 0.415 15 | 0.295 16 | 0.143 7 | 0.610 15 | 0.000 1 | 0.000 12 | 0.777 11 | 0.397 16 | 0.324 15 | 0.000 1 | 0.778 14 | 0.179 8 | 0.702 15 | 0.000 1 | 0.274 16 | 0.404 3 | 0.233 9 | 0.622 14 | 0.398 7 | |||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | 0.249 16 | 0.455 16 | 0.171 15 | 0.079 16 | 0.418 15 | 0.059 13 | 0.186 9 | 0.000 3 | 0.000 6 | 0.000 1 | 0.335 9 | 0.250 12 | 0.316 15 | 0.766 7 | 0.697 16 | 0.142 13 | 0.170 13 | 0.003 2 | 0.553 13 | 0.112 8 | 0.097 1 | 0.201 15 | 0.186 13 | 0.476 14 | 0.081 15 | 0.000 9 | 0.216 16 | 0.000 1 | 0.000 3 | 0.001 16 | 0.314 16 | 0.000 10 | 0.000 1 | 0.055 14 | 0.000 2 | 0.832 16 | 0.094 3 | 0.659 14 | 0.002 5 | 0.076 8 | 0.310 16 | 0.293 16 | 0.664 13 | 0.000 1 | 0.000 2 | 0.175 16 | 0.634 6 | 0.130 2 | 0.552 16 | 0.686 16 | 0.700 16 | 0.076 7 | 0.110 14 | 0.770 16 | 0.000 1 | 0.000 10 | 0.430 16 | 0.000 7 | 0.319 14 | 0.166 14 | 0.542 16 | 0.327 15 | 0.205 15 | 0.332 13 | 0.052 14 | 0.375 12 | 0.444 16 | 0.000 8 | 0.012 16 | 0.930 16 | 0.203 2 | 0.000 1 | 0.000 12 | 0.046 11 | 0.175 13 | 0.413 15 | 0.592 13 | 0.471 15 | 0.299 14 | 0.152 16 | 0.340 15 | 0.247 16 | 0.000 3 | 0.000 1 | 0.225 14 | 0.058 3 | 0.037 3 | 0.000 11 | 0.207 2 | 0.862 15 | 0.014 13 | 0.548 12 | 0.033 15 | 0.233 15 | 0.816 15 | 0.000 11 | 0.000 1 | 0.542 14 | 0.123 4 | 0.121 1 | 0.019 2 | 0.000 1 | 0.000 10 | 0.463 15 | 0.454 16 | 0.045 16 | 0.128 16 | 0.557 15 | 0.235 13 | 0.441 15 | 0.063 9 | 0.484 16 | 0.000 5 | 0.308 16 | 0.000 1 | 0.000 7 | 0.000 3 | 0.318 16 | 0.000 4 | 0.000 7 | 0.000 1 | 0.545 13 | 0.543 11 | 0.164 13 | 0.734 8 | 0.000 8 | 0.000 1 | 0.215 16 | 0.371 15 | 0.198 13 | 0.743 13 | 0.205 15 | 0.062 14 | 0.000 11 | 0.079 13 | 0.000 1 | 0.683 15 | 0.547 15 | 0.142 10 | 0.000 9 | 0.441 10 | 0.579 15 | 0.000 1 | 0.464 14 | 0.098 8 | 0.041 1 | 0.000 1 | 0.590 13 | 0.000 2 | 0.000 1 | 0.373 12 | 0.494 13 | 0.174 14 | 0.105 15 | 0.001 16 | 0.895 15 | 0.222 15 | 0.537 12 | 0.307 15 | 0.180 6 | 0.625 13 | 0.000 1 | 0.000 12 | 0.591 16 | 0.609 13 | 0.398 14 | 0.000 1 | 0.766 16 | 0.014 15 | 0.638 16 | 0.000 1 | 0.377 13 | 0.004 12 | 0.206 12 | 0.609 16 | 0.465 5 | |||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minkowski 34D | 0.253 15 | 0.463 15 | 0.154 16 | 0.102 15 | 0.381 16 | 0.084 7 | 0.134 14 | 0.000 3 | 0.000 6 | 0.000 1 | 0.386 6 | 0.141 16 | 0.279 16 | 0.737 11 | 0.703 15 | 0.014 16 | 0.164 14 | 0.000 3 | 0.663 9 | 0.092 13 | 0.000 9 | 0.224 14 | 0.291 10 | 0.531 8 | 0.056 16 | 0.000 9 | 0.242 15 | 0.000 1 | 0.000 3 | 0.013 14 | 0.331 15 | 0.000 10 | 0.000 1 | 0.035 16 | 0.001 1 | 0.858 14 | 0.059 12 | 0.650 15 | 0.000 7 | 0.056 13 | 0.353 15 | 0.299 14 | 0.670 12 | 0.000 1 | 0.000 2 | 0.284 15 | 0.484 14 | 0.071 8 | 0.594 15 | 0.720 15 | 0.710 14 | 0.027 11 | 0.068 16 | 0.813 13 | 0.000 1 | 0.005 9 | 0.492 13 | 0.164 1 | 0.274 15 | 0.111 15 | 0.571 15 | 0.307 16 | 0.293 12 | 0.307 16 | 0.150 8 | 0.163 16 | 0.531 15 | 0.002 7 | 0.545 4 | 0.932 14 | 0.093 16 | 0.000 1 | 0.000 12 | 0.002 13 | 0.159 14 | 0.368 16 | 0.581 14 | 0.440 16 | 0.228 16 | 0.406 9 | 0.282 16 | 0.294 15 | 0.000 3 | 0.000 1 | 0.189 15 | 0.060 2 | 0.036 4 | 0.000 11 | 0.000 4 | 0.897 11 | 0.000 16 | 0.525 13 | 0.025 16 | 0.205 16 | 0.771 16 | 0.000 11 | 0.000 1 | 0.593 10 | 0.108 8 | 0.044 6 | 0.000 4 | 0.000 1 | 0.000 10 | 0.282 16 | 0.589 14 | 0.094 15 | 0.169 15 | 0.466 16 | 0.227 15 | 0.419 16 | 0.125 3 | 0.757 13 | 0.002 3 | 0.334 15 | 0.000 1 | 0.000 7 | 0.000 3 | 0.357 14 | 0.000 4 | 0.000 7 | 0.000 1 | 0.582 9 | 0.513 13 | 0.337 10 | 0.612 16 | 0.000 8 | 0.000 1 | 0.250 15 | 0.352 16 | 0.136 16 | 0.724 15 | 0.655 4 | 0.280 8 | 0.000 11 | 0.046 15 | 0.000 1 | 0.606 16 | 0.559 14 | 0.159 7 | 0.102 2 | 0.445 9 | 0.655 9 | 0.000 1 | 0.310 16 | 0.117 5 | 0.000 7 | 0.000 1 | 0.581 14 | 0.026 1 | 0.000 1 | 0.265 16 | 0.483 15 | 0.084 16 | 0.097 16 | 0.044 14 | 0.865 16 | 0.142 16 | 0.588 11 | 0.351 14 | 0.272 2 | 0.596 16 | 0.000 1 | 0.003 10 | 0.622 15 | 0.720 9 | 0.096 16 | 0.000 1 | 0.771 15 | 0.016 14 | 0.772 14 | 0.000 1 | 0.302 14 | 0.194 7 | 0.214 11 | 0.621 15 | 0.197 16 | |||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 |