2D Semantic Instance Benchmark
The 2D semantic instance prediction task involves detecting and segmenting the object in an image.
Evaluation and metricsOur evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP (from overlaps [0.5:0.95:0.05]), as well as AP 50% for an overlap value of 50. Note that multiple predictions of the same ground truth instance are penalized as false positives.
This table lists the benchmark results for the 2D semantic instance scenario.
Method | Info | avg ap 50% | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMSANet (Instance) | 0.380 1 | 0.549 3 | 0.651 1 | 0.147 1 | 0.397 3 | 0.399 1 | 0.167 2 | 0.437 3 | 0.319 2 | 0.210 1 | 0.301 1 | 0.235 1 | 0.463 2 | 0.245 2 | 0.372 3 | 0.511 1 | 0.296 2 | 0.876 1 | 0.268 1 | |
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022 | ||||||||||||||||||||
MaskRCNN_ScanNet | 0.227 4 | 0.228 4 | 0.381 4 | 0.013 4 | 0.237 4 | 0.339 4 | 0.089 4 | 0.339 4 | 0.150 4 | 0.134 4 | 0.143 4 | 0.179 2 | 0.255 4 | 0.053 4 | 0.331 4 | 0.244 4 | 0.154 4 | 0.687 4 | 0.127 4 | |
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17 | ||||||||||||||||||||
UniDet_RVC | 0.358 3 | 0.554 2 | 0.543 3 | 0.128 2 | 0.402 2 | 0.381 3 | 0.200 1 | 0.461 2 | 0.328 1 | 0.138 3 | 0.232 3 | 0.148 3 | 0.466 1 | 0.109 3 | 0.538 1 | 0.506 2 | 0.294 3 | 0.862 2 | 0.159 3 | |
FKNet | 0.368 2 | 0.588 1 | 0.618 2 | 0.099 3 | 0.466 1 | 0.395 2 | 0.108 3 | 0.548 1 | 0.157 3 | 0.175 2 | 0.268 2 | 0.096 4 | 0.439 3 | 0.343 1 | 0.420 2 | 0.500 3 | 0.317 1 | 0.855 3 | 0.234 2 | |