The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
Queryformer0.874 141.000 10.978 220.809 360.876 20.936 170.702 220.716 410.920 110.875 160.766 90.772 130.818 61.000 10.995 10.916 60.892 41.000 10.767 23
MG-Former0.887 41.000 10.991 140.837 250.801 230.935 180.887 30.857 100.946 40.891 100.748 170.805 50.739 161.000 10.993 20.809 570.876 141.000 10.842 3
Competitor-SPFormer0.881 81.000 11.000 10.845 230.854 70.962 40.714 210.857 110.904 140.902 60.782 70.789 110.662 271.000 10.988 30.874 250.886 60.997 390.847 2
PointRel0.901 11.000 10.978 230.928 30.879 10.962 50.882 40.749 360.947 30.912 20.802 30.753 170.820 21.000 10.984 40.919 50.894 31.000 10.815 14
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
KmaxOneFormerNetpermissive0.883 61.000 11.000 10.798 390.848 100.971 10.853 50.903 30.827 320.910 30.748 160.809 40.724 181.000 10.980 50.855 390.844 231.000 10.832 6
OneFormer3Dcopyleft0.896 21.000 11.000 10.913 60.858 60.951 90.786 140.837 180.916 120.908 40.778 80.803 60.750 141.000 10.976 60.926 40.882 70.995 470.849 1
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
UniPerception0.884 51.000 10.979 200.872 160.869 30.892 270.806 110.890 60.835 290.892 90.755 130.811 20.779 100.955 470.951 70.876 220.914 10.997 390.840 5
Competitor-MAFT0.896 21.000 11.000 10.872 160.847 110.967 30.955 10.778 320.901 150.919 10.784 50.812 10.770 121.000 10.949 80.865 330.868 171.000 10.840 4
Mask-Group0.792 331.000 10.968 290.812 320.766 340.864 350.460 490.815 230.888 190.598 490.651 360.639 300.600 470.918 500.941 90.896 120.721 441.000 10.723 31
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 341.000 10.996 60.829 300.767 330.889 300.600 320.819 220.770 430.594 500.620 430.541 440.700 211.000 10.941 90.889 150.763 331.000 10.526 59
SSEC0.820 281.000 10.983 180.924 40.826 160.817 510.415 550.899 50.793 380.673 370.731 210.636 320.653 281.000 10.939 110.804 590.878 101.000 10.780 19
ISBNetpermissive0.835 231.000 10.950 340.731 550.819 170.918 200.790 130.740 380.851 270.831 180.661 320.742 200.650 301.000 10.937 120.814 560.836 251.000 10.765 24
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
SoftGroup++0.874 141.000 10.972 260.947 10.839 140.898 260.556 400.913 20.881 210.756 240.828 20.748 190.821 11.000 10.937 130.937 10.887 51.000 10.821 11
TD3Dpermissive0.875 121.000 10.976 240.877 120.783 290.970 20.889 20.828 190.945 50.803 220.713 240.720 240.709 191.000 10.936 140.934 30.873 151.000 10.791 18
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
GraphCut0.832 251.000 10.922 480.724 570.798 240.902 250.701 230.856 130.859 240.715 290.706 250.748 180.640 411.000 10.934 150.862 360.880 81.000 10.729 29
SIM3D0.878 101.000 10.972 250.863 190.817 200.952 80.821 80.783 290.890 180.902 70.735 200.797 70.799 91.000 10.931 160.893 130.853 211.000 10.792 17
ExtMask3D0.867 171.000 11.000 10.756 530.816 210.940 140.795 120.760 340.862 230.888 140.739 180.763 150.774 111.000 10.929 170.878 210.879 91.000 10.819 13
SoftGrouppermissive0.865 181.000 10.969 270.860 200.860 50.913 220.558 370.899 40.911 130.760 230.828 10.736 210.802 80.981 440.919 180.875 230.877 131.000 10.820 12
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
Box2Mask0.803 311.000 10.962 320.874 130.707 520.887 310.686 270.598 550.961 10.715 300.694 290.469 520.700 211.000 10.912 190.902 80.753 370.997 390.637 43
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
Mask3D0.870 161.000 10.985 170.782 460.818 190.938 160.760 160.749 360.923 90.877 150.760 100.785 120.820 21.000 10.912 190.864 350.878 110.983 530.825 9
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SSTNetpermissive0.789 351.000 10.840 620.888 100.717 490.835 440.717 200.684 480.627 580.724 270.652 350.727 230.600 471.000 10.912 190.822 510.757 361.000 10.691 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
HAISpermissive0.803 311.000 10.994 100.820 310.759 360.855 400.554 410.882 80.827 330.615 450.676 310.638 310.646 391.000 10.912 190.797 620.767 310.994 480.726 30
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
EV3D0.877 111.000 10.996 80.873 140.854 80.950 100.691 250.783 300.926 70.889 130.754 140.794 100.820 21.000 10.912 190.900 90.860 191.000 10.779 20
InsSSM0.883 61.000 10.996 60.800 380.865 40.960 60.808 100.852 150.940 60.899 80.785 40.810 30.700 211.000 10.912 190.851 420.895 20.997 390.827 8
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Spherical Mask(CtoF)0.875 121.000 10.991 150.873 140.850 90.946 120.691 250.752 350.926 70.889 120.759 110.794 90.820 21.000 10.912 190.900 90.878 111.000 10.769 22
TopoSeg0.832 251.000 10.981 190.933 20.819 180.826 480.524 460.841 170.811 340.681 350.759 120.687 260.727 170.981 440.911 260.883 170.853 221.000 10.756 27
IPCA-Inst0.851 201.000 10.968 280.884 110.842 130.862 390.693 240.812 240.888 200.677 360.783 60.698 250.807 71.000 10.911 260.865 340.865 181.000 10.757 26
SPFormerpermissive0.851 201.000 10.994 100.806 370.774 310.942 130.637 290.849 160.859 250.889 110.720 230.730 220.665 261.000 10.911 260.868 320.873 161.000 10.796 16
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
TST3D0.879 91.000 10.994 90.921 50.807 220.939 150.771 150.887 70.923 100.862 170.722 220.768 140.756 131.000 10.910 290.904 70.836 260.999 380.824 10
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
DANCENET0.786 371.000 10.936 370.783 440.737 450.852 420.742 190.647 500.765 450.811 200.624 420.579 370.632 441.000 10.909 300.898 110.696 490.944 570.601 52
Mask3D_evaluation0.843 221.000 10.955 330.847 220.795 250.932 190.750 180.780 310.891 170.818 190.737 190.633 340.703 201.000 10.902 310.870 280.820 270.941 610.805 15
DENet0.786 371.000 10.929 410.736 540.750 420.720 640.755 170.934 10.794 370.590 510.561 520.537 450.650 301.000 10.882 320.804 600.789 291.000 10.719 32
DualGroup0.782 391.000 10.927 420.811 330.772 320.853 410.631 310.805 260.773 400.613 460.611 440.610 350.650 300.835 610.881 330.879 200.750 391.000 10.675 38
RPGN0.806 301.000 10.992 120.789 410.723 480.891 280.650 280.810 250.832 300.665 390.699 280.658 280.700 211.000 10.881 330.832 480.774 300.997 390.613 49
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
PointGroup0.778 401.000 10.900 520.798 400.715 500.863 360.493 470.706 430.895 160.569 560.701 260.576 380.639 421.000 10.880 350.851 410.719 450.997 390.709 34
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.764 431.000 10.897 550.837 260.753 390.830 470.459 510.824 200.699 520.629 430.653 340.438 550.650 301.000 10.880 350.858 370.690 541.000 10.650 41
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
AOIA0.767 421.000 10.937 360.810 340.740 440.906 230.550 420.800 280.706 500.577 550.624 410.544 430.596 520.857 530.879 370.880 190.750 380.992 490.658 39
SphereSeg0.835 231.000 10.963 310.891 90.794 260.954 70.822 70.710 420.961 20.721 280.693 300.530 470.653 291.000 10.867 380.857 380.859 200.991 500.771 21
MAFT0.860 191.000 10.990 160.810 350.829 150.949 110.809 90.688 470.836 280.904 50.751 150.796 80.741 151.000 10.864 390.848 440.837 241.000 10.828 7
One_Thing_One_Clickpermissive0.675 611.000 10.823 630.782 450.621 590.766 560.211 670.736 400.560 650.586 520.522 580.636 330.453 650.641 650.853 400.850 430.694 510.997 390.411 66
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PBNetpermissive0.825 271.000 10.963 300.837 270.843 120.865 340.822 60.647 500.878 220.733 260.639 390.683 270.650 301.000 10.853 400.870 290.820 281.000 10.744 28
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
GICN0.788 361.000 10.978 210.867 180.781 300.833 450.527 450.824 200.806 350.549 580.596 460.551 400.700 211.000 10.853 400.935 20.733 411.000 10.651 40
PE0.776 411.000 10.900 530.860 200.728 470.869 320.400 560.857 120.774 390.568 570.701 270.602 360.646 390.933 490.843 430.890 140.691 530.997 390.709 33
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
OSIS0.725 501.000 10.885 580.653 630.657 580.801 520.576 360.695 450.828 310.698 320.534 570.457 540.500 610.857 530.831 440.841 460.627 601.000 10.619 46
INS-Conv-instance0.762 441.000 10.923 450.765 490.785 280.905 240.600 320.655 490.646 570.683 340.647 370.530 460.650 301.000 10.824 450.830 490.693 520.944 570.644 42
SALoss-ResNet0.695 541.000 10.855 600.579 680.589 630.735 620.484 480.588 560.856 260.634 420.571 500.298 600.500 611.000 10.824 450.818 520.702 480.935 640.545 57
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MTML0.731 491.000 10.992 120.779 480.609 610.746 590.308 600.867 90.601 610.607 470.539 560.519 480.550 541.000 10.824 450.869 300.729 421.000 10.616 47
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SegGroup_inspermissive0.637 621.000 10.923 470.593 670.561 650.746 600.143 720.504 640.766 440.485 660.442 640.372 580.530 570.714 620.815 480.775 640.673 561.000 10.431 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-MPA0.737 481.000 10.933 390.785 420.794 270.831 460.279 630.588 560.695 530.616 440.559 530.556 390.650 301.000 10.809 490.875 240.696 501.000 10.608 51
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
Sparse R-CNN0.714 531.000 10.926 440.694 580.699 540.890 290.636 300.516 630.693 540.743 250.588 480.369 590.601 460.594 670.800 500.886 160.676 550.986 520.546 56
RWSeg0.739 471.000 10.899 540.759 510.753 400.823 490.282 610.691 460.658 550.582 540.594 470.547 410.628 451.000 10.795 510.868 310.728 431.000 10.692 36
OccuSeg+instance0.742 461.000 10.923 450.785 420.745 430.867 330.557 380.578 590.729 480.670 380.644 380.488 500.577 531.000 10.794 520.830 490.620 621.000 10.550 55
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
DKNet0.815 291.000 10.930 400.844 240.765 350.915 210.534 440.805 260.805 360.807 210.654 330.763 160.650 301.000 10.794 520.881 180.766 321.000 10.758 25
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
Dyco3Dcopyleft0.761 451.000 10.935 380.893 80.752 410.863 370.600 320.588 560.742 470.641 410.633 400.546 420.550 540.857 530.789 540.853 400.762 340.987 510.699 35
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
PanopticFusion-inst0.693 551.000 10.852 610.655 620.616 600.788 540.334 580.763 330.771 420.457 680.555 540.652 290.518 580.857 530.765 550.732 680.631 580.944 570.577 54
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SSEN0.724 511.000 10.926 430.781 470.661 560.845 430.596 350.529 620.764 460.653 400.489 630.461 530.500 610.859 520.765 550.872 270.761 351.000 10.577 53
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
3D-BoNet0.687 571.000 10.887 570.836 280.587 640.643 710.550 420.620 520.724 490.522 630.501 610.243 630.512 591.000 10.751 570.807 580.661 570.909 660.612 50
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
Sem_Recon_ins0.484 690.764 690.608 740.470 710.521 670.637 720.311 590.218 710.348 730.365 720.223 710.222 640.258 720.629 660.734 580.596 740.509 650.858 700.444 64
SPG_WSIS0.678 601.000 10.880 590.836 280.701 530.727 630.273 650.607 540.706 510.541 610.515 600.174 660.600 470.857 530.716 590.846 450.711 461.000 10.506 60
ClickSeg_Instance0.685 581.000 10.818 640.600 660.715 510.795 530.557 380.533 610.591 630.601 480.519 590.429 570.638 430.938 480.706 600.817 540.624 610.944 570.502 61
Region-18class0.497 680.250 750.902 510.689 590.540 660.747 580.276 640.610 530.268 740.489 650.348 660.000 740.243 740.220 730.663 610.814 550.459 700.928 650.496 63
R-PointNet0.544 660.500 730.655 720.661 610.663 550.765 570.432 530.214 720.612 590.584 530.499 620.204 650.286 710.429 700.655 620.650 730.539 630.950 560.499 62
UNet-backbone0.605 641.000 10.909 500.764 500.603 620.704 650.415 540.301 690.548 660.461 670.394 650.267 610.386 670.857 530.649 630.817 530.504 660.959 550.356 69
MASCpermissive0.615 630.711 700.802 650.540 690.757 370.777 550.029 730.577 600.588 640.521 640.600 450.436 560.534 560.697 630.616 640.838 470.526 640.980 540.534 58
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
NeuralBF0.718 521.000 10.945 350.901 70.754 380.817 500.460 490.700 440.772 410.688 330.568 510.000 740.500 610.981 440.606 650.872 260.740 401.000 10.614 48
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Occipital-SCS0.688 561.000 10.913 490.730 560.737 460.743 610.442 520.855 140.655 560.546 590.546 550.263 620.508 600.889 510.568 660.771 650.705 470.889 670.625 45
MaskRCNN 2d->3d Proj0.261 750.903 680.081 750.008 750.233 740.175 750.280 620.106 750.150 750.203 750.175 740.480 510.218 750.143 740.542 670.404 750.153 750.393 750.049 75
Hier3Dcopyleft0.540 671.000 10.727 670.626 640.467 710.693 660.200 680.412 650.480 700.528 620.318 690.077 730.600 470.688 640.382 680.768 660.472 680.941 610.350 70
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
3D-SISpermissive0.558 651.000 10.773 660.614 650.503 680.691 670.200 680.412 650.498 690.546 600.311 700.103 700.600 470.857 530.382 680.799 610.445 720.938 630.371 67
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
3D-BEVIS0.401 730.667 710.687 710.419 740.137 750.587 730.188 710.235 700.359 720.211 740.093 750.080 710.311 700.571 680.382 680.754 670.300 740.874 690.357 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
PCJC0.684 591.000 10.895 560.757 520.659 570.862 380.189 700.739 390.606 600.712 310.581 490.515 490.650 300.857 530.357 710.785 630.631 590.889 670.635 44
Sgpn_scannet0.390 740.556 720.636 730.493 700.353 730.539 740.271 660.160 740.450 710.359 730.178 730.146 670.250 730.143 740.347 720.698 710.436 730.667 730.331 71
tmp0.474 701.000 10.727 670.433 730.481 700.673 690.022 750.380 670.517 680.436 700.338 680.128 680.343 690.429 700.291 730.728 690.473 670.833 710.300 72
SemRegionNet-20cls0.470 711.000 10.727 670.447 720.481 690.678 680.024 740.380 670.518 670.440 690.339 670.128 680.350 680.429 700.212 740.711 700.465 690.833 710.290 73
ASIS0.422 720.333 740.707 700.676 600.401 720.650 700.350 570.177 730.594 620.376 710.202 720.077 720.404 660.571 680.197 750.674 720.447 710.500 740.260 74