The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
PointComp0.897 21.000 10.998 60.864 200.869 30.969 30.830 80.783 330.905 150.894 100.791 40.834 10.769 141.000 10.982 50.920 50.868 201.000 10.872 2
DKNet0.815 331.000 10.930 440.844 270.765 390.915 240.534 480.805 280.805 390.807 250.654 370.763 200.650 331.000 10.794 560.881 210.766 361.000 10.758 28
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
TopoSeg0.832 291.000 10.981 210.933 20.819 220.826 520.524 500.841 190.811 370.681 390.759 140.687 300.727 190.981 480.911 300.883 200.853 251.000 10.756 30
SoftGroup++0.874 171.000 10.972 280.947 10.839 150.898 290.556 440.913 20.881 230.756 280.828 20.748 230.821 11.000 10.937 150.937 10.887 61.000 10.821 13
SPFormerpermissive0.851 231.000 10.994 110.806 410.774 350.942 160.637 330.849 180.859 270.889 130.720 260.730 260.665 291.000 10.911 300.868 360.873 171.000 10.796 19
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SSEC0.820 321.000 10.983 200.924 40.826 190.817 550.415 590.899 50.793 420.673 410.731 240.636 360.653 311.000 10.939 130.804 630.878 111.000 10.780 22
SegGroup_inspermissive0.637 661.000 10.923 510.593 710.561 690.746 640.143 760.504 680.766 480.485 700.442 680.372 620.530 610.714 660.815 520.775 680.673 601.000 10.431 69
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SPG_WSIS0.678 641.000 10.880 630.836 310.701 570.727 670.273 690.607 580.706 550.541 650.515 640.174 700.600 510.857 570.716 630.846 490.711 501.000 10.506 64
PBNetpermissive0.825 311.000 10.963 320.837 300.843 130.865 380.822 90.647 540.878 240.733 300.639 430.683 310.650 331.000 10.853 440.870 330.820 321.000 10.744 31
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
DCD0.885 61.000 10.933 430.856 240.832 160.959 80.930 20.858 110.802 400.859 200.767 100.796 110.709 221.000 10.971 80.871 310.904 21.000 10.874 1
SoftGrouppermissive0.865 211.000 10.969 290.860 220.860 60.913 250.558 410.899 40.911 140.760 270.828 10.736 250.802 80.981 480.919 200.875 260.877 141.000 10.820 15
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
IPCA-Inst0.851 231.000 10.968 300.884 120.842 140.862 430.693 280.812 260.888 220.677 400.783 70.698 290.807 71.000 10.911 300.865 380.865 211.000 10.757 29
DualGroup0.782 431.000 10.927 460.811 370.772 360.853 450.631 350.805 280.773 440.613 500.611 480.610 390.650 330.835 650.881 370.879 230.750 431.000 10.675 42
DD-UNet+Group0.764 471.000 10.897 590.837 290.753 430.830 510.459 550.824 220.699 560.629 470.653 380.438 590.650 331.000 10.880 390.858 410.690 581.000 10.650 45
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
DENet0.786 411.000 10.929 450.736 580.750 460.720 680.755 210.934 10.794 410.590 550.561 560.537 490.650 331.000 10.882 360.804 640.789 331.000 10.719 35
SSTNetpermissive0.789 391.000 10.840 660.888 110.717 530.835 480.717 240.684 520.627 620.724 310.652 390.727 270.600 511.000 10.912 220.822 550.757 401.000 10.691 41
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
Mask-Group0.792 371.000 10.968 310.812 360.766 380.864 390.460 530.815 250.888 210.598 530.651 400.639 340.600 510.918 540.941 110.896 140.721 481.000 10.723 34
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
GICN0.788 401.000 10.978 230.867 190.781 340.833 490.527 490.824 220.806 380.549 620.596 500.551 440.700 241.000 10.853 440.935 20.733 451.000 10.651 44
SSEN0.724 551.000 10.926 470.781 510.661 600.845 470.596 390.529 660.764 500.653 440.489 670.461 570.500 650.859 560.765 590.872 300.761 391.000 10.577 57
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
OccuSeg+instance0.742 501.000 10.923 490.785 460.745 470.867 370.557 420.578 630.729 520.670 420.644 420.488 540.577 571.000 10.794 560.830 530.620 661.000 10.550 59
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
CSC-Pretrained0.791 381.000 10.996 70.829 340.767 370.889 330.600 360.819 240.770 470.594 540.620 470.541 480.700 241.000 10.941 110.889 180.763 371.000 10.526 63
MTML0.731 531.000 10.992 130.779 520.609 650.746 630.308 640.867 100.601 650.607 510.539 600.519 520.550 581.000 10.824 490.869 340.729 461.000 10.616 51
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
3D-MPA0.737 521.000 10.933 420.785 460.794 310.831 500.279 670.588 600.695 570.616 480.559 570.556 430.650 331.000 10.809 530.875 270.696 541.000 10.608 55
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
GraphCut0.832 291.000 10.922 520.724 610.798 280.902 280.701 270.856 150.859 260.715 330.706 280.748 220.640 441.000 10.934 170.862 400.880 91.000 10.729 32
RWSeg0.739 511.000 10.899 580.759 550.753 440.823 530.282 650.691 500.658 590.582 580.594 510.547 450.628 481.000 10.795 550.868 350.728 471.000 10.692 40
NeuralBF0.718 561.000 10.945 380.901 70.754 420.817 540.460 530.700 480.772 450.688 370.568 550.000 780.500 650.981 480.606 690.872 290.740 441.000 10.614 52
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Queryformer0.874 171.000 10.978 240.809 400.876 20.936 200.702 260.716 450.920 120.875 180.766 110.772 170.818 61.000 10.995 10.916 70.892 51.000 10.767 26
TD3Dpermissive0.875 151.000 10.976 260.877 130.783 330.970 20.889 30.828 210.945 50.803 260.713 270.720 280.709 211.000 10.936 160.934 30.873 161.000 10.791 21
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
EV3D0.877 141.000 10.996 90.873 150.854 90.950 130.691 290.783 320.926 80.889 150.754 170.794 130.820 21.000 10.912 220.900 110.860 221.000 10.779 23
ExtMask3D0.867 201.000 11.000 10.756 570.816 250.940 170.795 150.760 380.862 250.888 160.739 210.763 190.774 111.000 10.929 190.878 240.879 101.000 10.819 16
MG-Former0.887 51.000 10.991 150.837 280.801 270.935 210.887 40.857 120.946 40.891 120.748 200.805 60.739 181.000 10.993 20.809 610.876 151.000 10.842 5
SIM3D0.878 131.000 10.972 270.863 210.817 240.952 100.821 110.783 310.890 200.902 80.735 230.797 90.799 91.000 10.931 180.893 150.853 241.000 10.792 20
Spherical Mask(CtoF)0.875 151.000 10.991 160.873 150.850 100.946 150.691 290.752 390.926 80.889 140.759 130.794 120.820 21.000 10.912 220.900 110.878 121.000 10.769 25
KmaxOneFormerNetpermissive0.883 81.000 11.000 10.798 430.848 110.971 10.853 70.903 30.827 340.910 30.748 190.809 50.724 201.000 10.980 60.855 430.844 261.000 10.832 8
PointRel0.901 11.000 10.978 250.928 30.879 10.962 60.882 50.749 400.947 30.912 20.802 30.753 210.820 21.000 10.984 40.919 60.894 41.000 10.815 17
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
MAFT0.860 221.000 10.990 170.810 390.829 170.949 140.809 120.688 510.836 300.904 60.751 180.796 100.741 171.000 10.864 430.848 480.837 271.000 10.828 9
OSIS0.725 541.000 10.885 620.653 670.657 620.801 560.576 400.695 490.828 330.698 360.534 610.457 580.500 650.857 570.831 480.841 500.627 641.000 10.619 50
ISBNetpermissive0.835 271.000 10.950 370.731 590.819 210.918 230.790 160.740 420.851 290.831 210.661 360.742 240.650 331.000 10.937 140.814 600.836 281.000 10.765 27
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
Competitor-MAFT0.896 31.000 11.000 10.872 170.847 120.967 40.955 10.778 350.901 170.919 10.784 60.812 20.770 131.000 10.949 100.865 370.868 191.000 10.840 6
TST3D0.879 121.000 10.994 100.921 50.807 260.939 180.771 180.887 80.923 110.862 190.722 250.768 180.756 151.000 10.910 330.904 80.836 290.999 400.824 12
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
VDG-Uni3DSeg0.880 111.000 10.990 170.889 100.823 200.952 110.764 190.893 60.941 60.907 50.756 150.781 160.628 481.000 10.918 210.903 90.872 180.999 400.821 14
PointGroup0.778 441.000 10.900 560.798 440.715 540.863 400.493 510.706 470.895 180.569 600.701 290.576 420.639 451.000 10.880 390.851 450.719 490.997 420.709 38
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 451.000 10.900 570.860 220.728 510.869 360.400 600.857 140.774 430.568 610.701 300.602 400.646 420.933 530.843 470.890 170.691 570.997 420.709 37
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Competitor-SPFormer0.881 101.000 11.000 10.845 260.854 80.962 50.714 250.857 130.904 160.902 70.782 80.789 140.662 301.000 10.988 30.874 280.886 70.997 420.847 4
RPGN0.806 341.000 10.992 130.789 450.723 520.891 310.650 320.810 270.832 320.665 430.699 310.658 320.700 241.000 10.881 370.832 520.774 340.997 420.613 53
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
InsSSM0.883 81.000 10.996 70.800 420.865 50.960 70.808 130.852 170.940 70.899 90.785 50.810 40.700 241.000 10.912 220.851 460.895 30.997 420.827 10
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
UniPerception0.884 71.000 10.979 220.872 170.869 40.892 300.806 140.890 70.835 310.892 110.755 160.811 30.779 100.955 510.951 90.876 250.914 10.997 420.840 7
Box2Mask0.803 351.000 10.962 340.874 140.707 560.887 340.686 310.598 590.961 10.715 340.694 320.469 560.700 241.000 10.912 220.902 100.753 410.997 420.637 47
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
One_Thing_One_Clickpermissive0.675 651.000 10.823 670.782 490.621 630.766 600.211 710.736 440.560 690.586 560.522 620.636 370.453 690.641 690.853 440.850 470.694 550.997 420.411 70
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
OneFormer3Dcopyleft0.896 31.000 11.000 10.913 60.858 70.951 120.786 170.837 200.916 130.908 40.778 90.803 70.750 161.000 10.976 70.926 40.882 80.995 500.849 3
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
HAISpermissive0.803 351.000 10.994 110.820 350.759 400.855 440.554 450.882 90.827 350.615 490.676 350.638 350.646 421.000 10.912 220.797 660.767 350.994 510.726 33
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
AOIA0.767 461.000 10.937 390.810 380.740 480.906 260.550 460.800 300.706 540.577 590.624 450.544 470.596 560.857 570.879 410.880 220.750 420.992 520.658 43
SphereSeg0.835 271.000 10.963 330.891 90.794 300.954 90.822 100.710 460.961 20.721 320.693 330.530 510.653 321.000 10.867 420.857 420.859 230.991 530.771 24
Dyco3Dcopyleft0.761 491.000 10.935 410.893 80.752 450.863 410.600 360.588 600.742 510.641 450.633 440.546 460.550 580.857 570.789 580.853 440.762 380.987 540.699 39
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
Sparse R-CNN0.714 571.000 10.926 480.694 620.699 580.890 320.636 340.516 670.693 580.743 290.588 520.369 630.601 500.594 710.800 540.886 190.676 590.986 550.546 60
Mask3D0.870 191.000 10.985 190.782 500.818 230.938 190.760 200.749 400.923 100.877 170.760 120.785 150.820 21.000 10.912 220.864 390.878 120.983 560.825 11
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
MASCpermissive0.615 670.711 740.802 690.540 730.757 410.777 590.029 770.577 640.588 680.521 680.600 490.436 600.534 600.697 670.616 680.838 510.526 680.980 570.534 62
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
UNet-backbone0.605 681.000 10.909 540.764 540.603 660.704 690.415 580.301 730.548 700.461 710.394 690.267 650.386 710.857 570.649 670.817 570.504 700.959 580.356 73
R-PointNet0.544 700.500 770.655 760.661 650.663 590.765 610.432 570.214 760.612 630.584 570.499 660.204 690.286 750.429 740.655 660.650 770.539 670.950 590.499 66
ClickSeg_Instance0.685 621.000 10.818 680.600 700.715 550.795 570.557 420.533 650.591 670.601 520.519 630.429 610.638 460.938 520.706 640.817 580.624 650.944 600.502 65
INS-Conv-instance0.762 481.000 10.923 490.765 530.785 320.905 270.600 360.655 530.646 610.683 380.647 410.530 500.650 331.000 10.824 490.830 530.693 560.944 600.644 46
DANCENET0.786 411.000 10.936 400.783 480.737 490.852 460.742 230.647 540.765 490.811 240.624 460.579 410.632 471.000 10.909 340.898 130.696 530.944 600.601 56
PanopticFusion-inst0.693 591.000 10.852 650.655 660.616 640.788 580.334 620.763 370.771 460.457 720.555 580.652 330.518 620.857 570.765 590.732 720.631 620.944 600.577 58
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Mask3D_evaluation0.843 261.000 10.955 350.847 250.795 290.932 220.750 220.780 340.891 190.818 220.737 220.633 380.703 231.000 10.902 350.870 320.820 310.941 640.805 18
Hier3Dcopyleft0.540 711.000 10.727 710.626 680.467 750.693 700.200 720.412 690.480 740.528 660.318 730.077 770.600 510.688 680.382 720.768 700.472 720.941 640.350 74
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
3D-SISpermissive0.558 691.000 10.773 700.614 690.503 720.691 710.200 720.412 690.498 730.546 640.311 740.103 740.600 510.857 570.382 720.799 650.445 760.938 660.371 71
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
SALoss-ResNet0.695 581.000 10.855 640.579 720.589 670.735 660.484 520.588 600.856 280.634 460.571 540.298 640.500 651.000 10.824 490.818 560.702 520.935 670.545 61
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
Region-18class0.497 720.250 790.902 550.689 630.540 700.747 620.276 680.610 570.268 780.489 690.348 700.000 780.243 780.220 770.663 650.814 590.459 740.928 680.496 67
3D-BoNet0.687 611.000 10.887 610.836 310.587 680.643 750.550 460.620 560.724 530.522 670.501 650.243 670.512 631.000 10.751 610.807 620.661 610.909 690.612 54
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
Occipital-SCS0.688 601.000 10.913 530.730 600.737 500.743 650.442 560.855 160.655 600.546 630.546 590.263 660.508 640.889 550.568 700.771 690.705 510.889 700.625 49
PCJC0.684 631.000 10.895 600.757 560.659 610.862 420.189 740.739 430.606 640.712 350.581 530.515 530.650 330.857 570.357 750.785 670.631 630.889 700.635 48
ODIN - Inspermissive0.847 251.000 10.951 360.834 330.828 180.875 350.871 60.767 360.821 360.816 230.690 340.800 80.771 121.000 10.912 220.891 160.821 300.886 720.713 36
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
3D-BEVIS0.401 770.667 750.687 750.419 780.137 790.587 770.188 750.235 740.359 760.211 780.093 790.080 750.311 740.571 720.382 720.754 710.300 780.874 730.357 72
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sem_Recon_ins0.484 730.764 730.608 780.470 750.521 710.637 760.311 630.218 750.348 770.365 760.223 750.222 680.258 760.629 700.734 620.596 780.509 690.858 740.444 68
SemRegionNet-20cls0.470 751.000 10.727 710.447 760.481 730.678 720.024 780.380 710.518 710.440 730.339 710.128 720.350 720.429 740.212 780.711 740.465 730.833 750.290 77
tmp0.474 741.000 10.727 710.433 770.481 740.673 730.022 790.380 710.517 720.436 740.338 720.128 720.343 730.429 740.291 770.728 730.473 710.833 750.300 76
Sgpn_scannet0.390 780.556 760.636 770.493 740.353 770.539 780.271 700.160 780.450 750.359 770.178 770.146 710.250 770.143 780.347 760.698 750.436 770.667 770.331 75
ASIS0.422 760.333 780.707 740.676 640.401 760.650 740.350 610.177 770.594 660.376 750.202 760.077 760.404 700.571 720.197 790.674 760.447 750.500 780.260 78
MaskRCNN 2d->3d Proj0.261 790.903 720.081 790.008 790.233 780.175 790.280 660.106 790.150 790.203 790.175 780.480 550.218 790.143 780.542 710.404 790.153 790.393 790.049 79