Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CeCo0.340 60.551 80.247 110.181 50.784 110.661 120.939 110.564 50.624 110.721 100.484 40.429 40.575 40.027 60.774 100.503 120.753 50.242 110.656 110.945 70.534 80.865 60.860 90.177 150.616 70.400 40.818 20.579 10.615 90.367 120.408 60.726 130.633 50.162 10.360 70.619 20.000 10.828 60.873 100.924 20.109 100.083 30.564 50.057 150.475 110.266 90.781 10.767 70.257 70.100 110.825 80.663 100.048 130.620 120.551 90.595 130.532 70.692 80.246 50.000 30.213 60.615 10.861 60.376 70.900 50.000 40.102 130.660 70.321 130.547 40.226 110.000 10.311 110.742 30.011 30.006 70.000 10.000 60.546 130.824 90.345 120.665 30.450 50.435 10.683 50.411 80.338 10.000 70.000 10.030 60.000 40.068 80.892 70.000 10.063 40.000 100.257 110.304 120.387 50.079 110.228 60.190 100.000 130.586 10.347 40.133 70.000 50.037 110.377 100.000 10.384 60.006 140.003 110.421 30.410 100.643 60.171 60.121 70.142 120.000 10.510 110.447 90.474 120.000 10.000 80.286 30.083 110.000 60.000 90.603 10.096 60.063 50.000 100.000 10.000 20.898 30.000 10.429 70.000 10.400 10.550 30.000 10.633 60.000 10.000 10.377 40.000 130.916 50.000 80.000 80.000 10.000 60.000 10.102 110.499 90.296 120.463 50.089 50.304 10.740 20.401 140.010 60.000 10.560 30.000 20.000 20.709 20.652 90.000 20.000 10.000 10.143 80.000 70.000 30.609 30.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
Minkowski 34Dpermissive0.253 140.463 140.154 150.102 140.771 140.650 140.932 130.483 140.571 140.710 130.331 140.250 130.492 110.044 40.703 140.419 150.606 150.227 140.621 140.865 150.531 90.771 150.813 120.291 80.484 130.242 140.612 150.282 150.440 150.351 130.299 130.622 140.593 110.027 120.293 110.310 150.000 10.757 120.858 130.737 120.150 70.164 10.368 150.084 70.381 150.142 150.357 130.720 90.214 120.092 140.724 130.596 150.056 120.655 80.525 110.581 150.352 150.594 140.056 150.000 30.014 150.224 130.772 130.205 150.720 140.000 40.159 50.531 140.163 150.294 140.136 150.000 10.169 140.589 130.000 40.000 80.000 10.002 40.663 80.466 150.265 150.582 100.337 100.016 130.559 130.084 150.000 30.000 70.000 10.036 40.000 40.125 30.670 120.000 10.102 20.071 80.164 130.406 80.386 60.046 130.068 150.159 130.117 50.284 140.111 140.094 130.000 50.000 150.197 150.000 10.044 130.013 120.002 120.228 150.307 150.588 100.025 150.545 50.134 130.000 10.655 40.302 130.282 150.000 10.060 20.000 100.035 150.000 60.000 90.097 150.000 100.000 60.005 90.000 10.000 20.096 150.000 10.334 140.000 10.000 110.274 140.000 10.513 140.000 10.000 10.280 80.194 50.897 90.000 80.000 80.000 10.000 60.000 10.108 90.279 150.189 140.141 150.059 130.272 20.307 150.445 80.003 90.000 10.353 140.000 20.026 10.000 100.581 120.001 10.000 10.000 10.093 150.002 60.000 30.000 90.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
PonderV2 ScanNet2000.346 50.552 70.270 80.175 60.810 80.682 80.950 40.560 60.641 100.761 40.398 100.357 90.570 70.113 20.804 50.603 60.750 60.283 40.681 70.952 50.548 50.874 40.852 110.290 90.700 20.356 100.792 40.445 90.545 110.436 100.351 110.787 80.611 80.050 90.290 120.519 110.000 10.825 70.888 40.842 30.259 40.100 20.558 60.070 120.497 70.247 120.457 110.889 30.248 90.106 100.817 100.691 60.094 60.729 50.636 60.620 110.503 100.660 110.243 60.000 30.212 70.590 40.860 70.400 50.881 70.000 40.202 20.622 100.408 90.499 80.261 90.000 10.385 90.636 90.000 40.000 80.000 10.000 60.433 140.843 70.660 60.574 120.481 30.336 40.677 60.486 50.000 30.030 30.000 10.034 50.000 40.080 70.869 90.000 10.000 90.000 100.540 80.727 30.232 140.115 80.186 80.193 80.000 130.403 100.326 60.103 110.000 50.290 40.392 90.000 10.346 70.062 90.424 50.375 70.431 50.667 40.115 120.082 100.239 70.000 10.504 120.606 60.584 100.000 10.002 60.186 70.104 90.000 60.394 40.384 70.083 70.000 60.007 80.000 10.000 20.880 40.000 10.377 100.000 10.263 30.565 20.000 10.608 80.000 10.000 10.304 70.009 80.924 30.000 80.000 80.000 10.000 60.000 10.128 30.584 30.475 60.412 70.076 90.269 30.621 50.509 70.010 60.000 10.491 90.063 10.000 20.472 40.880 20.000 20.000 10.000 10.179 50.125 20.000 30.441 60.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
OA-CNN-L_ScanNet2000.333 90.558 40.269 90.124 110.821 50.703 30.946 70.569 40.662 50.748 90.487 30.455 30.572 60.000 110.789 70.534 90.736 90.271 60.713 40.949 60.498 140.877 30.860 90.332 60.706 10.474 20.788 60.406 110.637 60.495 90.355 100.805 60.592 120.015 140.396 50.602 60.000 10.799 80.876 70.713 130.276 30.000 70.493 110.080 80.448 130.363 50.661 40.833 60.262 60.125 70.823 90.665 90.076 90.720 70.557 80.637 80.517 80.672 100.227 70.000 30.158 100.496 50.843 100.352 90.835 110.000 40.103 120.711 50.527 30.526 50.320 70.000 10.568 60.625 100.067 10.000 80.000 10.001 50.806 60.836 80.621 90.591 70.373 80.314 50.668 70.398 90.003 20.000 70.000 10.016 140.024 30.043 130.906 60.000 10.052 50.000 100.384 100.330 110.342 70.100 90.223 70.183 110.112 60.476 50.313 70.130 90.196 30.112 100.370 110.000 10.234 90.071 80.160 70.403 50.398 110.492 130.197 40.076 110.272 50.000 10.200 150.560 80.735 50.000 10.000 80.000 100.110 70.002 50.021 80.412 60.000 100.000 60.000 100.000 10.000 20.794 90.000 10.445 60.000 10.022 90.509 60.000 10.517 130.000 10.000 10.001 140.245 30.915 60.024 40.089 50.000 10.262 20.000 10.103 100.524 70.392 100.515 20.013 150.251 40.411 120.662 30.001 100.000 10.473 110.000 20.000 20.150 50.699 80.000 20.000 10.000 10.166 60.000 70.024 20.000 90.000 1
DITR0.409 20.616 10.351 10.215 30.831 30.791 10.947 60.619 10.730 20.762 30.494 20.571 10.597 20.000 110.853 10.625 30.796 20.301 30.723 30.959 40.617 20.862 70.917 30.573 10.562 90.591 10.784 70.504 50.757 10.737 20.429 40.853 10.662 30.135 30.459 30.558 100.000 10.913 10.878 60.687 140.008 140.000 70.615 40.238 10.651 10.370 30.742 20.925 20.360 10.167 50.938 10.752 20.118 30.827 20.670 40.723 20.614 30.628 130.372 10.000 30.143 110.175 150.873 30.652 10.991 10.340 10.148 60.814 10.656 10.524 60.491 20.000 10.743 10.752 20.000 40.000 80.000 10.399 10.865 30.953 10.833 10.694 20.444 60.000 150.688 40.609 20.000 30.053 20.000 10.022 90.000 40.053 120.940 30.000 10.186 10.093 50.854 20.877 10.534 20.404 10.270 30.191 90.198 40.461 80.375 10.152 30.921 10.132 80.235 130.000 10.617 10.330 10.896 10.399 60.431 50.597 90.759 10.554 40.400 20.000 10.559 90.699 10.852 20.000 10.000 80.091 90.385 10.000 60.000 90.478 40.077 80.000 60.140 40.000 10.000 20.670 120.000 10.452 50.000 10.263 30.361 120.000 10.643 40.000 10.000 10.357 50.005 100.928 20.362 10.496 10.000 10.000 60.000 10.072 150.585 20.587 30.476 40.037 140.191 50.410 130.629 50.118 10.000 10.479 100.000 20.000 20.107 70.839 30.000 20.000 10.000 10.139 110.036 40.000 30.247 80.000 1
CSC-Pretrainpermissive0.249 150.455 150.171 140.079 150.766 150.659 130.930 150.494 120.542 150.700 150.314 150.215 150.430 150.121 10.697 150.441 140.683 140.235 120.609 150.895 140.476 150.816 140.770 150.186 120.634 50.216 150.734 80.340 140.471 140.307 140.293 150.591 150.542 130.076 70.205 140.464 130.000 10.484 150.832 150.766 70.052 130.000 70.413 140.059 140.418 140.222 140.318 150.609 130.206 130.112 90.743 110.625 120.076 90.579 140.548 100.590 140.371 140.552 150.081 140.003 20.142 120.201 140.638 150.233 140.686 150.000 40.142 80.444 150.375 110.247 150.198 120.000 10.128 150.454 150.019 20.097 10.000 10.000 60.553 120.557 140.373 110.545 140.164 130.014 140.547 140.174 130.000 30.002 50.000 10.037 30.000 40.063 100.664 140.000 10.000 90.130 20.170 120.152 150.335 90.079 110.110 130.175 120.098 80.175 150.166 130.045 150.207 20.014 120.465 50.000 10.001 150.001 150.046 100.299 130.327 140.537 110.033 140.012 150.186 100.000 10.205 140.377 120.463 140.000 10.058 30.000 100.055 130.041 20.000 90.105 140.000 100.000 60.000 100.000 10.000 20.398 130.000 10.308 150.000 10.000 110.319 130.000 10.543 120.000 10.000 10.062 120.004 110.862 140.000 80.000 80.000 10.000 60.000 10.123 40.316 140.225 130.250 120.094 30.180 60.332 140.441 90.000 110.000 10.310 150.000 20.000 20.000 100.592 110.000 20.000 10.000 10.203 20.000 70.000 30.000 90.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGroundpermissive0.272 130.485 130.184 130.106 130.778 130.676 100.932 130.479 150.572 130.718 120.399 90.265 120.453 140.085 30.745 130.446 130.726 110.232 130.622 130.901 130.512 120.826 130.786 140.178 140.549 100.277 130.659 130.381 130.518 120.295 150.323 120.777 100.599 100.028 110.321 90.363 140.000 10.708 130.858 130.746 100.063 120.022 50.457 130.077 90.476 100.243 130.402 120.397 150.233 100.077 150.720 140.610 140.103 50.629 110.437 150.626 100.446 120.702 60.190 100.005 10.058 140.322 110.702 140.244 130.768 120.000 40.134 100.552 130.279 140.395 130.147 140.000 10.207 130.612 120.000 40.000 80.000 10.000 60.658 90.566 130.323 130.525 150.229 110.179 80.467 150.154 140.000 30.002 50.000 10.051 10.000 40.127 20.703 110.000 10.000 90.216 10.112 140.358 100.547 10.187 60.092 140.156 150.055 90.296 130.252 100.143 50.000 50.014 120.398 80.000 10.028 140.173 60.000 130.265 140.348 130.415 140.179 50.019 140.218 80.000 10.597 70.274 150.565 110.000 10.012 50.000 100.039 140.022 30.000 90.117 130.000 100.000 60.000 100.000 10.000 20.324 140.000 10.384 90.000 10.000 110.251 150.000 10.566 100.000 10.000 10.066 110.404 10.886 110.199 20.000 80.000 10.059 30.000 10.136 10.540 50.127 150.295 100.085 60.143 70.514 60.413 130.000 110.000 10.498 80.000 20.000 20.000 100.623 100.000 20.000 10.000 10.132 140.000 70.000 30.000 90.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
PTv3 ScanNet2000.393 30.592 30.330 20.216 20.851 20.687 70.971 20.586 20.755 10.752 80.505 10.404 60.575 40.000 110.848 20.616 40.761 30.349 10.738 20.978 20.546 60.860 80.926 20.346 30.654 40.384 60.828 10.523 30.699 30.583 60.387 70.822 40.688 20.118 50.474 20.603 50.000 10.832 50.903 20.753 90.140 80.000 70.650 30.109 40.520 30.457 10.497 90.871 40.281 40.192 40.887 40.748 30.168 10.727 60.733 20.740 10.644 10.714 50.190 100.000 30.256 40.449 70.914 10.514 30.759 130.337 20.172 40.692 60.617 20.636 10.325 60.000 10.641 20.782 10.000 40.065 40.000 10.000 60.842 40.903 20.661 40.662 40.612 10.405 20.731 10.566 30.000 30.000 70.000 10.017 130.301 10.088 60.941 20.000 10.077 30.000 100.717 60.790 20.310 110.026 150.264 40.349 10.220 30.397 110.366 20.115 100.000 50.337 20.463 60.000 10.531 30.218 30.593 20.455 20.469 10.708 30.210 30.592 30.108 140.000 10.728 10.682 30.671 70.000 10.000 80.407 10.136 30.022 30.575 10.436 50.259 30.428 10.048 50.000 10.000 20.879 50.000 10.480 30.000 10.133 80.597 10.000 10.690 20.000 10.000 10.009 130.000 130.921 40.000 80.151 40.000 10.000 60.000 10.109 70.494 110.622 20.394 80.073 100.141 80.798 10.528 60.026 40.000 10.551 40.000 20.000 20.134 60.717 70.000 20.000 10.000 10.188 30.000 70.000 30.791 20.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OctFormer ScanNet200permissive0.326 110.539 90.265 100.131 100.806 90.670 110.943 100.535 90.662 50.705 140.423 80.407 50.505 100.003 90.765 110.582 80.686 130.227 140.680 80.943 80.601 30.854 100.892 50.335 50.417 150.357 90.724 90.453 80.632 70.596 50.432 30.783 90.512 140.021 130.244 130.637 10.000 10.787 90.873 100.743 110.000 150.000 70.534 90.110 30.499 60.289 80.626 60.620 120.168 150.204 20.849 70.679 70.117 40.633 100.684 30.650 70.552 50.684 90.312 30.000 30.175 90.429 80.865 40.413 40.837 100.000 40.145 70.626 90.451 80.487 90.513 10.000 10.529 70.613 110.000 40.033 50.000 10.000 60.828 50.871 40.622 80.587 90.411 70.137 100.645 120.343 100.000 30.000 70.000 10.022 90.000 40.026 150.829 100.000 10.022 70.089 60.842 30.253 130.318 100.296 30.178 90.291 30.224 20.584 20.200 120.132 80.000 50.128 90.227 140.000 10.230 100.047 100.149 80.331 100.412 90.618 70.164 70.102 90.522 10.000 10.655 40.378 110.469 130.000 10.000 80.000 100.105 80.000 60.000 90.483 30.000 100.000 60.028 70.000 10.000 20.906 10.000 10.339 130.000 10.000 110.457 80.000 10.612 70.000 10.000 10.408 30.000 130.900 80.000 80.000 80.000 10.029 40.000 10.074 140.455 130.479 50.427 60.079 80.140 90.496 70.414 120.022 50.000 10.471 120.000 20.000 20.000 100.722 60.000 20.000 10.000 10.138 120.000 70.000 30.000 90.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
GSTran0.339 70.536 100.273 60.169 70.811 70.690 40.949 50.506 110.690 40.765 20.397 110.235 140.480 120.014 80.788 80.593 70.746 70.282 50.696 50.913 120.538 70.853 110.889 60.286 100.670 30.310 110.682 120.445 90.638 50.598 40.358 90.841 20.643 40.061 80.373 60.614 40.000 10.786 100.876 70.754 80.357 10.000 70.535 80.071 110.491 80.369 40.487 100.698 100.317 30.202 30.659 150.666 80.086 70.832 10.461 140.597 120.455 110.731 30.156 120.000 30.316 10.318 120.784 120.348 100.896 60.000 40.084 140.648 80.514 50.470 110.368 50.000 10.441 80.705 60.000 40.079 30.000 10.021 30.872 20.872 30.621 90.589 80.144 140.129 110.648 110.459 60.000 30.000 70.000 10.022 90.289 20.096 50.667 130.000 10.000 90.000 100.834 40.682 40.178 150.033 140.256 50.196 70.000 130.473 60.279 80.079 140.008 40.495 10.425 70.000 10.228 110.009 130.564 30.410 40.366 120.665 50.161 90.615 20.365 30.000 10.609 60.386 100.681 60.000 10.000 80.199 60.093 100.497 10.109 70.252 100.161 40.118 40.000 100.000 10.000 20.857 60.000 10.495 10.000 10.162 70.412 110.000 10.563 110.000 10.000 10.000 150.012 70.877 120.004 70.000 80.000 10.002 50.000 10.109 70.458 120.358 110.246 130.060 120.139 100.466 90.803 10.097 20.000 10.517 70.000 20.000 20.060 90.413 130.000 20.000 10.000 10.183 40.024 50.000 30.297 70.000 1
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.827 40.689 50.970 30.528 100.661 70.753 70.436 70.378 70.469 130.042 50.810 30.654 10.760 40.266 80.659 100.973 30.574 40.849 120.897 40.382 20.546 110.372 80.698 110.491 60.617 80.526 80.436 10.764 120.476 150.101 60.409 40.585 80.000 10.835 30.901 30.810 50.102 110.000 70.688 20.096 50.483 90.264 100.612 80.591 140.358 20.161 60.863 50.707 40.128 20.814 30.669 50.629 90.563 40.651 120.258 40.000 30.194 80.494 60.806 110.394 60.953 40.000 40.233 10.757 40.508 60.556 30.476 30.000 10.573 50.741 40.000 40.000 80.000 10.000 60.000 150.852 60.678 30.616 50.460 40.338 30.710 20.534 40.000 30.025 40.000 10.043 20.000 40.056 110.493 150.000 10.000 90.109 40.785 50.590 50.298 120.282 40.143 110.262 40.053 100.526 40.337 50.215 10.000 50.135 70.510 40.000 10.596 20.043 110.511 40.321 120.459 20.772 20.124 110.060 120.266 60.000 10.574 80.568 70.653 90.000 10.093 10.298 20.239 20.000 60.516 20.129 120.284 20.000 60.431 10.000 10.000 20.848 70.000 10.492 20.000 10.376 20.522 50.000 10.469 150.000 10.000 10.330 60.151 60.875 130.000 80.254 30.000 10.000 60.000 10.088 120.661 10.481 40.255 110.105 10.139 100.666 40.641 40.000 110.000 10.614 20.000 20.000 20.000 100.921 10.000 20.000 10.000 10.497 10.000 70.000 30.000 90.000 1
L3DETR-ScanNet_2000.336 80.533 110.279 50.155 80.801 100.689 50.946 70.539 80.660 80.759 50.380 120.333 110.583 30.000 110.788 80.529 100.740 80.261 100.679 90.940 100.525 110.860 80.883 70.226 110.613 80.397 50.720 100.512 40.565 100.620 30.417 50.775 110.629 60.158 20.298 100.579 90.000 10.835 30.883 50.927 10.114 90.079 40.511 100.073 100.508 50.312 60.629 50.861 50.192 140.098 130.908 30.636 110.032 150.563 150.514 120.664 50.505 90.697 70.225 80.000 30.264 30.411 90.860 70.321 110.960 20.058 30.109 110.776 30.526 40.557 20.303 80.000 10.339 100.712 50.000 40.014 60.000 10.000 60.638 100.856 50.641 70.579 110.107 150.119 120.661 80.416 70.000 30.000 70.000 10.007 150.000 40.067 90.910 50.000 10.000 90.000 100.463 90.448 70.294 130.324 20.293 20.211 60.108 70.448 90.068 150.141 60.000 50.330 30.699 10.000 10.256 80.192 50.000 130.355 80.418 70.209 150.146 100.679 10.101 150.000 10.503 130.687 20.671 70.000 10.000 80.174 80.117 50.000 60.122 60.515 20.104 50.259 20.312 30.000 10.000 20.765 100.000 10.369 120.000 10.183 60.422 100.000 10.646 30.000 10.000 10.565 20.001 120.125 150.010 50.002 70.000 10.487 10.000 10.075 130.548 40.420 80.233 140.082 70.138 120.430 110.427 110.000 110.000 10.549 50.000 20.000 20.074 80.409 140.000 20.000 10.000 10.152 70.051 30.000 30.598 40.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
ALS-MinkowskiNetcopyleft0.414 10.610 20.322 30.271 10.852 10.710 20.973 10.572 30.719 30.795 10.477 50.506 20.601 10.000 110.804 50.646 20.804 10.344 20.777 10.984 10.671 10.879 20.936 10.342 40.632 60.449 30.817 30.475 70.723 20.798 10.376 80.832 30.693 10.031 100.564 10.510 120.000 10.893 20.905 10.672 150.314 20.000 70.718 10.153 20.542 20.397 20.726 30.752 80.252 80.226 10.916 20.800 10.047 140.807 40.769 10.709 30.630 20.769 10.217 90.000 30.285 20.598 30.846 90.535 20.956 30.000 40.137 90.784 20.464 70.463 120.230 100.000 10.598 30.662 80.000 40.087 20.000 10.135 20.900 10.780 120.703 20.741 10.571 20.149 90.697 30.646 10.000 30.076 10.000 10.025 70.000 40.106 40.981 10.000 10.043 60.113 30.888 10.248 140.404 40.252 50.314 10.220 50.245 10.466 70.366 20.159 20.000 50.149 60.690 20.000 10.531 30.253 20.285 60.460 10.440 40.813 10.230 20.283 60.159 110.000 10.728 10.666 50.958 10.000 10.021 40.252 40.118 40.000 60.445 30.223 110.285 10.194 30.390 20.000 10.475 10.842 80.000 10.455 40.000 10.250 50.458 70.000 10.865 10.000 10.000 10.635 10.359 20.972 10.087 30.447 20.000 10.000 60.000 10.129 20.532 60.446 70.503 30.071 110.135 130.699 30.717 20.097 20.000 10.665 10.000 20.000 21.000 10.752 50.000 20.000 10.000 10.142 90.200 10.259 11.000 10.000 1
PPT-SpUNet-F.T.0.332 100.556 50.270 70.123 120.816 60.682 80.946 70.549 70.657 90.756 60.459 60.376 80.550 80.001 100.807 40.616 40.727 100.267 70.691 60.942 90.530 100.872 50.874 80.330 70.542 120.374 70.792 40.400 120.673 40.572 70.433 20.793 70.623 70.008 150.351 80.594 70.000 10.783 110.876 70.833 40.213 50.000 70.537 70.091 60.519 40.304 70.620 70.942 10.264 50.124 80.855 60.695 50.086 70.646 90.506 130.658 60.535 60.715 40.314 20.000 30.241 50.608 20.897 20.359 80.858 90.000 40.076 150.611 110.392 100.509 70.378 40.000 10.579 40.565 140.000 40.000 80.000 10.000 60.755 70.806 100.661 40.572 130.350 90.181 70.660 90.300 120.000 30.000 70.000 10.023 80.000 40.042 140.930 40.000 10.000 90.077 70.584 70.392 90.339 80.185 70.171 100.308 20.006 120.563 30.256 90.150 40.000 50.002 140.345 120.000 10.045 120.197 40.063 90.323 110.453 30.600 80.163 80.037 130.349 40.000 10.672 30.679 40.753 30.000 10.000 80.000 100.117 50.000 60.000 90.291 90.000 100.000 60.039 60.000 10.000 20.899 20.000 10.374 110.000 10.000 110.545 40.000 10.634 50.000 10.000 10.074 100.223 40.914 70.000 80.021 60.000 10.000 60.000 10.112 50.498 100.649 10.383 90.095 20.135 130.449 100.432 100.008 80.000 10.518 60.000 20.000 20.000 100.796 40.000 20.000 10.000 10.138 120.000 70.000 30.000 90.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
AWCS0.305 120.508 120.225 120.142 90.782 120.634 150.937 120.489 130.578 120.721 100.364 130.355 100.515 90.023 70.764 120.523 110.707 120.264 90.633 120.922 110.507 130.886 10.804 130.179 130.436 140.300 120.656 140.529 20.501 130.394 110.296 140.820 50.603 90.131 40.179 150.619 20.000 10.707 140.865 120.773 60.171 60.010 60.484 120.063 130.463 120.254 110.332 140.649 110.220 110.100 110.729 120.613 130.071 110.582 130.628 70.702 40.424 130.749 20.137 130.000 30.142 120.360 100.863 50.305 120.877 80.000 40.173 30.606 120.337 120.478 100.154 130.000 10.253 120.664 70.000 40.000 80.000 10.000 60.626 110.782 110.302 140.602 60.185 120.282 60.651 100.317 110.000 30.000 70.000 10.022 90.000 40.154 10.876 80.000 10.014 80.063 90.029 150.553 60.467 30.084 100.124 120.157 140.049 110.373 120.252 100.097 120.000 50.219 50.542 30.000 10.392 50.172 70.000 130.339 90.417 80.533 120.093 130.115 80.195 90.000 10.516 100.288 140.741 40.000 10.001 70.233 50.056 120.000 60.159 50.334 80.077 80.000 60.000 100.000 10.000 20.749 110.000 10.411 80.000 10.008 100.452 90.000 10.595 90.000 10.000 10.220 90.006 90.894 100.006 60.000 80.000 10.000 60.000 10.112 50.504 80.404 90.551 10.093 40.129 150.484 80.381 150.000 110.000 10.396 130.000 20.000 20.620 30.402 150.000 20.000 10.000 10.142 90.000 70.000 30.512 50.000 1


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 25%head ap 25%common ap 25%tail ap 25%chairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.445 10.653 10.392 10.254 10.844 20.746 20.818 10.888 40.556 10.262 10.890 10.025 21.000 10.608 10.930 10.694 30.721 10.930 50.686 30.966 10.615 40.440 10.725 40.201 10.890 30.414 40.827 10.552 10.158 50.806 10.924 10.042 30.512 20.412 50.226 10.604 30.830 11.000 10.125 10.792 10.815 10.097 10.648 10.551 20.354 41.000 10.630 10.241 21.000 10.853 10.204 10.974 40.841 10.778 10.358 20.927 10.300 10.045 10.640 10.363 10.745 20.710 11.000 10.000 10.330 20.943 10.315 20.600 11.000 10.027 10.080 50.556 50.500 10.409 10.000 10.194 11.000 10.500 10.493 20.761 20.053 40.042 30.780 20.454 10.009 10.333 10.050 10.321 10.000 10.084 10.552 20.008 20.027 20.750 10.500 10.442 30.657 10.765 20.120 20.183 30.021 21.000 10.510 20.016 10.000 10.400 10.619 10.000 10.396 10.290 10.000 10.741 10.699 11.000 10.260 10.017 30.125 50.000 10.792 40.399 41.000 10.000 10.049 30.265 10.063 30.000 31.000 10.335 20.381 10.500 10.250 10.004 20.000 10.727 20.000 10.538 30.000 10.188 10.677 20.000 10.930 10.000 10.000 10.966 10.391 10.908 20.000 10.028 10.000 11.000 10.000 10.152 10.451 20.458 10.971 10.573 10.606 10.167 50.625 10.004 10.000 10.058 50.000 10.000 11.000 11.000 10.000 10.056 10.000 20.200 30.309 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
CSC-Pretrain Inst.permissive0.275 50.466 50.218 40.110 50.783 50.383 50.783 40.829 50.367 40.168 50.305 50.000 30.661 50.413 50.869 20.719 10.546 50.997 30.685 40.841 40.555 50.277 40.768 20.132 30.779 50.448 30.364 50.212 50.161 40.768 20.692 50.000 40.395 30.500 20.000 30.450 50.591 31.000 10.020 50.000 30.423 50.007 50.625 30.420 30.505 31.000 10.353 20.119 50.571 40.819 20.014 31.000 10.774 20.689 40.311 50.866 20.067 30.000 30.400 30.000 50.278 50.501 31.000 10.000 10.162 50.584 50.286 30.206 50.125 20.000 20.084 40.649 20.000 30.000 20.000 10.000 20.000 30.125 40.312 40.727 30.221 20.000 40.667 40.114 30.000 20.000 30.000 30.065 50.000 10.004 40.278 30.000 30.000 30.500 20.000 40.571 10.000 50.250 40.019 50.145 50.000 40.667 20.200 40.000 20.000 10.200 30.258 40.000 10.000 40.000 40.000 10.369 40.429 30.613 40.000 50.000 40.500 10.000 10.500 50.333 50.500 40.000 10.106 10.000 30.000 40.000 30.000 30.333 30.000 30.000 30.000 30.000 30.000 10.918 10.000 10.638 10.000 10.000 30.750 10.000 10.833 20.000 10.000 10.143 50.000 50.750 30.000 10.000 30.000 10.000 20.000 10.063 40.377 40.200 30.222 50.055 40.500 20.677 20.250 40.000 20.000 10.500 20.000 10.000 10.000 20.500 20.000 10.000 20.000 20.115 50.000 20.000 20.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
TD3D Scannet200permissive0.379 20.603 20.306 20.190 20.885 10.755 10.800 20.958 10.390 20.260 20.866 20.232 10.979 20.523 30.869 30.559 50.689 21.000 10.795 10.905 20.748 10.173 50.825 10.173 20.970 10.457 10.615 20.456 20.200 10.621 40.906 20.553 10.517 10.510 10.220 20.715 10.706 21.000 10.113 20.792 10.717 20.073 20.635 20.557 10.638 11.000 10.205 50.146 31.000 10.769 50.186 21.000 10.710 50.778 10.415 10.834 40.226 20.021 20.590 20.356 20.817 10.477 51.000 10.000 10.635 10.843 20.427 10.270 40.125 20.000 20.102 31.000 10.125 20.000 20.000 10.000 20.000 30.125 40.370 30.622 50.221 10.196 20.836 10.288 20.000 20.093 20.020 20.294 20.000 10.075 20.667 10.038 10.111 10.250 40.000 40.526 20.495 30.908 10.111 30.259 10.003 30.667 20.045 50.000 20.000 10.400 10.274 30.000 10.274 20.226 20.000 10.520 20.302 50.731 20.103 30.458 10.500 10.000 11.000 10.472 10.792 30.000 10.088 20.061 20.250 10.009 20.250 20.333 30.181 20.396 20.051 20.012 10.000 10.458 40.000 10.424 50.000 10.101 20.390 50.000 10.833 20.000 10.000 10.857 20.222 31.000 10.000 10.003 20.000 10.000 20.000 10.102 20.275 50.400 20.735 20.061 30.433 30.533 30.625 10.000 20.000 10.259 40.000 10.000 10.000 20.500 20.000 10.000 21.000 10.600 10.000 20.250 10.000 20.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Minkowski 34D Inst.permissive0.280 40.488 40.192 50.124 40.804 40.518 40.772 50.904 30.337 50.191 40.443 40.000 30.861 40.502 40.868 40.669 40.587 40.997 30.467 50.828 50.732 20.342 30.745 30.119 50.918 20.404 50.419 40.398 30.172 30.618 50.743 40.167 20.077 50.500 20.000 30.568 40.506 51.000 10.044 40.000 30.502 40.010 40.593 40.284 50.305 50.903 50.213 40.142 40.981 30.790 40.000 41.000 10.715 40.538 50.346 40.830 50.067 30.000 30.400 30.074 40.333 40.551 21.000 10.000 10.292 30.777 40.118 50.317 30.100 40.000 20.191 20.648 30.000 30.000 20.000 10.000 20.000 30.500 10.213 50.825 10.021 50.333 10.648 50.098 40.000 20.000 30.000 30.077 30.000 10.000 50.150 50.000 30.000 30.000 50.225 20.281 40.447 40.000 50.090 40.148 40.000 40.479 50.542 10.000 20.000 10.200 30.131 50.000 10.250 30.000 40.000 10.159 50.396 40.677 30.021 40.000 40.500 10.000 11.000 10.442 30.125 50.000 10.000 40.000 30.000 40.333 10.000 30.528 10.000 30.000 30.000 30.000 30.000 10.200 50.000 10.516 40.000 10.000 30.500 30.000 10.833 20.000 10.000 10.286 40.083 40.750 30.000 10.000 30.000 10.000 20.000 10.059 50.445 30.200 30.535 40.070 20.167 40.385 40.375 30.000 20.000 10.333 30.000 10.000 10.000 20.500 20.000 10.000 20.000 20.200 30.000 20.000 20.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
LGround Inst.permissive0.314 30.529 30.225 30.155 30.810 30.625 30.798 30.940 20.372 30.217 30.484 30.000 30.927 30.528 20.826 50.694 20.605 31.000 10.731 20.846 30.716 30.350 20.589 50.123 40.857 40.457 20.578 30.376 40.183 20.765 30.800 30.000 40.278 40.500 20.000 30.659 20.569 41.000 10.093 30.000 30.539 30.010 30.578 50.378 40.571 21.000 10.337 30.252 10.530 50.814 30.000 40.744 50.743 30.746 30.346 30.863 30.067 30.000 30.400 30.167 30.667 30.488 41.000 10.000 10.208 40.783 30.166 40.375 20.071 50.000 20.200 10.607 40.000 30.000 20.000 10.000 21.000 10.500 10.517 10.716 40.221 20.000 40.706 30.085 50.000 20.000 30.000 30.077 40.000 10.063 30.278 30.000 30.000 30.500 20.083 30.181 50.515 20.286 30.144 10.219 20.042 10.582 40.400 30.000 20.000 10.000 50.305 20.000 10.000 40.036 30.000 10.413 30.500 20.533 50.250 20.200 20.500 10.000 11.000 10.472 11.000 10.000 10.000 40.000 30.250 10.000 30.000 30.333 30.000 30.000 30.000 30.000 30.000 10.600 30.000 10.594 20.000 10.000 30.500 30.000 10.647 50.000 10.000 10.429 30.333 20.500 50.000 10.000 30.000 10.000 20.000 10.069 30.696 10.050 50.556 30.031 50.042 50.750 10.250 40.000 20.000 10.630 10.000 10.000 10.000 20.500 20.000 10.000 20.000 20.400 20.000 20.000 20.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 120.856 140.555 150.943 10.660 240.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PTv3 ScanNet0.794 20.941 30.813 200.851 90.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 330.696 130.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 390.852 20.889 10.774 90.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 90.824 20.749 10.948 90.887 70.771 11
PonderV20.785 40.978 10.800 290.833 260.788 40.853 190.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 150.832 440.821 50.792 320.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 10.843 180.781 70.858 130.575 70.831 360.685 150.714 40.979 10.594 100.310 290.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 27
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 210.818 150.836 230.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 250.958 10.702 480.805 160.708 90.916 350.898 40.801 3
TTT-KD0.773 70.646 940.818 150.809 380.774 90.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 110.912 80.838 40.823 30.694 140.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 110.840 330.564 110.900 110.686 140.677 140.961 170.537 340.348 120.769 150.903 120.785 130.815 80.676 250.939 160.880 130.772 10
PPT-SpUNet-Joint0.766 90.932 50.794 350.829 280.751 250.854 170.540 230.903 100.630 370.672 170.963 150.565 240.357 90.788 50.900 140.737 280.802 170.685 190.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 250.849 110.786 50.846 290.566 100.876 180.690 110.674 160.960 190.576 200.226 700.753 270.904 110.777 150.815 80.722 60.923 300.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 130.840 200.757 200.853 190.580 40.848 290.709 40.643 270.958 230.587 150.295 360.753 270.884 220.758 220.815 80.725 40.927 260.867 250.743 18
OccuSeg+Semantic0.764 110.758 600.796 330.839 210.746 280.907 10.562 120.850 280.680 170.672 170.978 50.610 40.335 200.777 90.819 480.847 10.830 10.691 160.972 20.885 100.727 25
O-CNNpermissive0.762 130.924 80.823 80.844 170.770 120.852 210.577 50.847 310.711 30.640 310.958 230.592 110.217 760.762 200.888 190.758 220.813 120.726 30.932 240.868 240.744 17
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 770.789 400.843 180.762 160.856 140.562 120.920 40.657 270.658 210.958 230.589 130.337 170.782 60.879 230.787 110.779 380.678 210.926 280.880 130.799 4
DTC0.757 150.843 270.820 110.847 140.791 20.862 110.511 360.870 200.707 50.652 230.954 380.604 80.279 470.760 210.942 20.734 290.766 470.701 120.884 570.874 220.736 19
OA-CNN-L_ScanNet200.756 160.783 460.826 60.858 50.776 80.837 360.548 180.896 140.649 290.675 150.962 160.586 160.335 200.771 140.802 520.770 180.787 350.691 160.936 190.880 130.761 13
PNE0.755 170.786 440.835 50.834 250.758 180.849 240.570 90.836 350.648 300.668 190.978 50.581 190.367 70.683 380.856 320.804 70.801 210.678 210.961 50.889 60.716 32
P. Hermosilla: Point Neighborhood Embeddings.
ConDaFormer0.755 170.927 60.822 90.836 230.801 10.849 240.516 330.864 250.651 280.680 130.958 230.584 180.282 440.759 230.855 340.728 310.802 170.678 210.880 620.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PointTransformerV20.752 190.742 680.809 240.872 20.758 180.860 120.552 160.891 160.610 440.687 80.960 190.559 280.304 320.766 180.926 60.767 190.797 250.644 360.942 130.876 190.722 29
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 190.906 130.793 370.802 440.689 430.825 490.556 140.867 210.681 160.602 470.960 190.555 300.365 80.779 80.859 290.747 250.795 290.717 70.917 340.856 330.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
BPNetcopyleft0.749 210.909 110.818 150.811 360.752 230.839 350.485 500.842 320.673 190.644 260.957 280.528 400.305 310.773 120.859 290.788 100.818 70.693 150.916 350.856 330.723 28
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 210.793 420.790 380.807 400.750 270.856 140.524 290.881 170.588 560.642 300.977 90.591 120.274 500.781 70.929 40.804 70.796 260.642 370.947 100.885 100.715 33
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 230.623 970.804 270.859 40.745 290.824 510.501 400.912 70.690 110.685 100.956 290.567 230.320 260.768 170.918 70.720 360.802 170.676 250.921 320.881 120.779 8
StratifiedFormerpermissive0.747 240.901 140.803 280.845 160.757 200.846 290.512 350.825 390.696 90.645 250.956 290.576 200.262 610.744 320.861 280.742 260.770 450.705 100.899 470.860 300.734 20
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 250.870 190.838 30.858 50.729 340.850 230.501 400.874 190.587 570.658 210.956 290.564 250.299 340.765 190.900 140.716 390.812 130.631 420.939 160.858 310.709 34
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 250.771 540.819 130.848 130.702 400.865 100.397 880.899 120.699 70.664 200.948 580.588 140.330 220.746 310.851 380.764 200.796 260.704 110.935 200.866 260.728 23
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DiffSeg3D20.745 270.725 770.814 190.837 220.751 250.831 430.514 340.896 140.674 180.684 110.960 190.564 250.303 330.773 120.820 470.713 420.798 240.690 180.923 300.875 200.757 14
Retro-FPN0.744 280.842 280.800 290.767 580.740 300.836 380.541 210.914 60.672 200.626 350.958 230.552 310.272 520.777 90.886 210.696 490.801 210.674 280.941 140.858 310.717 30
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 290.620 980.799 320.849 110.730 330.822 530.493 470.897 130.664 210.681 120.955 320.562 270.378 40.760 210.903 120.738 270.801 210.673 290.907 390.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
LRPNet0.742 300.816 360.806 260.807 400.752 230.828 470.575 70.839 340.699 70.637 320.954 380.520 430.320 260.755 260.834 420.760 210.772 420.676 250.915 370.862 280.717 30
SAT0.742 300.860 220.765 520.819 310.769 140.848 260.533 250.829 370.663 220.631 340.955 320.586 160.274 500.753 270.896 160.729 300.760 530.666 310.921 320.855 350.733 21
LargeKernel3D0.739 320.909 110.820 110.806 420.740 300.852 210.545 190.826 380.594 550.643 270.955 320.541 330.263 600.723 360.858 310.775 170.767 460.678 210.933 220.848 400.694 39
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
MinkowskiNetpermissive0.736 330.859 230.818 150.832 270.709 380.840 330.521 310.853 270.660 240.643 270.951 480.544 320.286 420.731 340.893 170.675 580.772 420.683 200.874 690.852 380.727 25
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
RPN0.736 330.776 500.790 380.851 90.754 220.854 170.491 490.866 230.596 540.686 90.955 320.536 350.342 150.624 530.869 250.787 110.802 170.628 430.927 260.875 200.704 36
IPCA0.731 350.890 150.837 40.864 30.726 350.873 60.530 280.824 400.489 900.647 240.978 50.609 50.336 180.624 530.733 610.758 220.776 400.570 680.949 80.877 160.728 23
PointTransformer++0.725 360.727 760.811 230.819 310.765 150.841 320.502 390.814 450.621 400.623 370.955 320.556 290.284 430.620 550.866 260.781 140.757 570.648 340.932 240.862 280.709 34
SparseConvNet0.725 360.647 930.821 100.846 150.721 360.869 70.533 250.754 610.603 500.614 390.955 320.572 220.325 240.710 370.870 240.724 340.823 30.628 430.934 210.865 270.683 42
MatchingNet0.724 380.812 380.812 210.810 370.735 320.834 400.495 460.860 260.572 640.602 470.954 380.512 450.280 460.757 240.845 400.725 330.780 370.606 530.937 180.851 390.700 38
INS-Conv-semantic0.717 390.751 630.759 550.812 350.704 390.868 80.537 240.842 320.609 460.608 430.953 420.534 370.293 370.616 560.864 270.719 380.793 300.640 380.933 220.845 440.663 48
PointMetaBase0.714 400.835 290.785 410.821 290.684 450.846 290.531 270.865 240.614 410.596 510.953 420.500 480.246 660.674 390.888 190.692 500.764 490.624 450.849 840.844 450.675 44
contrastBoundarypermissive0.705 410.769 570.775 460.809 380.687 440.820 560.439 760.812 460.661 230.591 530.945 660.515 440.171 940.633 500.856 320.720 360.796 260.668 300.889 540.847 410.689 40
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 420.774 520.800 290.793 490.760 170.847 280.471 540.802 490.463 970.634 330.968 130.491 510.271 540.726 350.910 90.706 440.815 80.551 800.878 630.833 460.570 80
RFCR0.702 430.889 160.745 660.813 340.672 480.818 600.493 470.815 440.623 380.610 410.947 600.470 600.249 650.594 590.848 390.705 450.779 380.646 350.892 520.823 520.611 63
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 440.825 330.796 330.723 650.716 370.832 420.433 780.816 420.634 350.609 420.969 110.418 860.344 140.559 710.833 430.715 400.808 150.560 740.902 440.847 410.680 43
JSENetpermissive0.699 450.881 180.762 530.821 290.667 490.800 720.522 300.792 520.613 420.607 440.935 860.492 500.205 810.576 640.853 360.691 520.758 550.652 330.872 720.828 490.649 52
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 460.743 670.794 350.655 880.684 450.822 530.497 450.719 710.622 390.617 380.977 90.447 730.339 160.750 300.664 770.703 470.790 330.596 580.946 120.855 350.647 53
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 470.732 720.772 470.786 500.677 470.866 90.517 320.848 290.509 830.626 350.952 460.536 350.225 720.545 770.704 680.689 550.810 140.564 730.903 430.854 370.729 22
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 480.884 170.754 590.795 470.647 560.818 600.422 800.802 490.612 430.604 450.945 660.462 630.189 890.563 700.853 360.726 320.765 480.632 410.904 410.821 550.606 67
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 490.704 830.741 700.754 620.656 510.829 450.501 400.741 660.609 460.548 610.950 520.522 420.371 50.633 500.756 560.715 400.771 440.623 460.861 800.814 580.658 49
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 500.866 200.748 630.819 310.645 580.794 750.450 660.802 490.587 570.604 450.945 660.464 620.201 840.554 730.840 410.723 350.732 670.602 560.907 390.822 540.603 70
KP-FCNN0.684 510.847 260.758 570.784 520.647 560.814 630.473 530.772 550.605 480.594 520.935 860.450 710.181 920.587 600.805 510.690 530.785 360.614 490.882 590.819 560.632 59
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VACNN++0.684 510.728 750.757 580.776 550.690 410.804 700.464 590.816 420.577 630.587 540.945 660.508 470.276 490.671 400.710 660.663 630.750 610.589 630.881 600.832 480.653 51
DGNet0.684 510.712 820.784 420.782 540.658 500.835 390.499 440.823 410.641 320.597 500.950 520.487 530.281 450.575 650.619 810.647 710.764 490.620 480.871 750.846 430.688 41
PointContrast_LA_SEM0.683 540.757 610.784 420.786 500.639 600.824 510.408 830.775 540.604 490.541 630.934 900.532 380.269 560.552 740.777 540.645 740.793 300.640 380.913 380.824 510.671 45
Superpoint Network0.683 540.851 250.728 740.800 460.653 530.806 680.468 560.804 470.572 640.602 470.946 630.453 700.239 690.519 820.822 450.689 550.762 520.595 600.895 500.827 500.630 60
VI-PointConv0.676 560.770 560.754 590.783 530.621 640.814 630.552 160.758 590.571 660.557 590.954 380.529 390.268 580.530 800.682 720.675 580.719 700.603 550.888 550.833 460.665 47
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 570.789 430.748 630.763 600.635 620.814 630.407 850.747 630.581 610.573 560.950 520.484 540.271 540.607 570.754 570.649 680.774 410.596 580.883 580.823 520.606 67
SALANet0.670 580.816 360.770 500.768 570.652 540.807 670.451 630.747 630.659 260.545 620.924 960.473 590.149 1040.571 670.811 500.635 770.746 620.623 460.892 520.794 710.570 80
O3DSeg0.668 590.822 340.771 490.496 1080.651 550.833 410.541 210.761 580.555 720.611 400.966 140.489 520.370 60.388 1020.580 840.776 160.751 590.570 680.956 60.817 570.646 54
PointASNLpermissive0.666 600.703 840.781 440.751 640.655 520.830 440.471 540.769 560.474 930.537 650.951 480.475 580.279 470.635 480.698 710.675 580.751 590.553 790.816 910.806 620.703 37
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PointConvpermissive0.666 600.781 470.759 550.699 730.644 590.822 530.475 520.779 530.564 690.504 790.953 420.428 800.203 830.586 620.754 570.661 640.753 580.588 640.902 440.813 600.642 55
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PPCNN++permissive0.663 620.746 650.708 770.722 660.638 610.820 560.451 630.566 990.599 520.541 630.950 520.510 460.313 280.648 450.819 480.616 820.682 850.590 620.869 760.810 610.656 50
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 630.778 480.702 800.806 420.619 650.813 660.468 560.693 790.494 860.524 710.941 780.449 720.298 350.510 840.821 460.675 580.727 690.568 710.826 890.803 650.637 57
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
MVF-GNN0.658 630.558 1050.751 610.655 880.690 410.722 970.453 620.867 210.579 620.576 550.893 1080.523 410.293 370.733 330.571 860.692 500.659 920.606 530.875 660.804 640.668 46
HPGCNN0.656 650.698 860.743 680.650 900.564 820.820 560.505 380.758 590.631 360.479 830.945 660.480 560.226 700.572 660.774 550.690 530.735 650.614 490.853 830.776 860.597 73
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 660.752 620.734 720.664 860.583 770.815 620.399 870.754 610.639 330.535 670.942 760.470 600.309 300.665 410.539 880.650 670.708 750.635 400.857 820.793 730.642 55
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 670.778 480.731 730.699 730.577 780.829 450.446 680.736 670.477 920.523 730.945 660.454 670.269 560.484 920.749 600.618 800.738 630.599 570.827 880.792 760.621 62
PointConv-SFPN0.641 680.776 500.703 790.721 670.557 850.826 480.451 630.672 840.563 700.483 820.943 750.425 830.162 990.644 460.726 620.659 650.709 740.572 670.875 660.786 810.559 86
MVPNetpermissive0.641 680.831 300.715 750.671 830.590 730.781 810.394 890.679 810.642 310.553 600.937 830.462 630.256 620.649 440.406 1020.626 780.691 820.666 310.877 640.792 760.608 66
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 700.717 810.701 810.692 760.576 790.801 710.467 580.716 720.563 700.459 890.953 420.429 790.169 960.581 630.854 350.605 830.710 720.550 810.894 510.793 730.575 78
FPConvpermissive0.639 710.785 450.760 540.713 710.603 680.798 730.392 900.534 1040.603 500.524 710.948 580.457 650.250 640.538 780.723 640.598 870.696 800.614 490.872 720.799 660.567 83
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 720.797 410.769 510.641 960.590 730.820 560.461 600.537 1030.637 340.536 660.947 600.388 930.206 800.656 420.668 750.647 710.732 670.585 650.868 770.793 730.473 106
PointSPNet0.637 730.734 710.692 880.714 700.576 790.797 740.446 680.743 650.598 530.437 940.942 760.403 890.150 1030.626 520.800 530.649 680.697 790.557 770.846 850.777 850.563 84
SConv0.636 740.830 310.697 840.752 630.572 810.780 830.445 700.716 720.529 760.530 680.951 480.446 740.170 950.507 870.666 760.636 760.682 850.541 870.886 560.799 660.594 74
Supervoxel-CNN0.635 750.656 910.711 760.719 680.613 660.757 920.444 730.765 570.534 750.566 570.928 940.478 570.272 520.636 470.531 900.664 620.645 960.508 940.864 790.792 760.611 63
joint point-basedpermissive0.634 760.614 990.778 450.667 850.633 630.825 490.420 810.804 470.467 950.561 580.951 480.494 490.291 390.566 680.458 970.579 930.764 490.559 760.838 860.814 580.598 72
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 770.731 730.688 910.675 800.591 720.784 800.444 730.565 1000.610 440.492 800.949 560.456 660.254 630.587 600.706 670.599 860.665 910.612 520.868 770.791 790.579 77
3DSM_DMMF0.631 780.626 960.745 660.801 450.607 670.751 930.506 370.729 700.565 680.491 810.866 1110.434 750.197 870.595 580.630 800.709 430.705 770.560 740.875 660.740 960.491 101
PointNet2-SFPN0.631 780.771 540.692 880.672 810.524 900.837 360.440 750.706 770.538 740.446 910.944 720.421 850.219 750.552 740.751 590.591 890.737 640.543 860.901 460.768 880.557 87
APCF-Net0.631 780.742 680.687 930.672 810.557 850.792 780.408 830.665 850.545 730.508 760.952 460.428 800.186 900.634 490.702 690.620 790.706 760.555 780.873 700.798 680.581 76
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 810.604 1010.741 700.766 590.590 730.747 940.501 400.734 680.503 850.527 690.919 1000.454 670.323 250.550 760.420 1010.678 570.688 830.544 840.896 490.795 700.627 61
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 820.800 400.625 1040.719 680.545 870.806 680.445 700.597 930.448 1000.519 740.938 820.481 550.328 230.489 910.499 950.657 660.759 540.592 610.881 600.797 690.634 58
SegGroup_sempermissive0.627 830.818 350.747 650.701 720.602 690.764 890.385 940.629 900.490 880.508 760.931 930.409 880.201 840.564 690.725 630.618 800.692 810.539 880.873 700.794 710.548 90
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 840.830 310.694 860.757 610.563 830.772 870.448 670.647 880.520 790.509 750.949 560.431 780.191 880.496 890.614 820.647 710.672 890.535 900.876 650.783 820.571 79
dtc_net0.625 840.703 840.751 610.794 480.535 880.848 260.480 510.676 830.528 770.469 860.944 720.454 670.004 1170.464 940.636 790.704 460.758 550.548 830.924 290.787 800.492 100
HPEIN0.618 860.729 740.668 940.647 920.597 710.766 880.414 820.680 800.520 790.525 700.946 630.432 760.215 770.493 900.599 830.638 750.617 1010.570 680.897 480.806 620.605 69
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 870.858 240.772 470.489 1090.532 890.792 780.404 860.643 890.570 670.507 780.935 860.414 870.046 1140.510 840.702 690.602 850.705 770.549 820.859 810.773 870.534 93
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 880.760 590.667 950.649 910.521 910.793 760.457 610.648 870.528 770.434 960.947 600.401 900.153 1020.454 950.721 650.648 700.717 710.536 890.904 410.765 890.485 102
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 890.634 950.743 680.697 750.601 700.781 810.437 770.585 960.493 870.446 910.933 910.394 910.011 1160.654 430.661 780.603 840.733 660.526 910.832 870.761 910.480 103
LAP-D0.594 900.720 790.692 880.637 970.456 1010.773 860.391 920.730 690.587 570.445 930.940 800.381 940.288 400.434 980.453 990.591 890.649 940.581 660.777 950.749 950.610 65
DPC0.592 910.720 790.700 820.602 1010.480 970.762 910.380 950.713 750.585 600.437 940.940 800.369 960.288 400.434 980.509 940.590 910.639 990.567 720.772 970.755 930.592 75
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 920.766 580.659 990.683 780.470 1000.740 960.387 930.620 920.490 880.476 840.922 980.355 990.245 670.511 830.511 930.571 940.643 970.493 980.872 720.762 900.600 71
ROSMRF0.580 930.772 530.707 780.681 790.563 830.764 890.362 970.515 1050.465 960.465 880.936 850.427 820.207 790.438 960.577 850.536 970.675 880.486 990.723 1030.779 830.524 96
SD-DETR0.576 940.746 650.609 1080.445 1130.517 920.643 1080.366 960.714 740.456 980.468 870.870 1100.432 760.264 590.558 720.674 730.586 920.688 830.482 1000.739 1010.733 980.537 92
SQN_0.1%0.569 950.676 880.696 850.657 870.497 930.779 840.424 790.548 1010.515 810.376 1010.902 1070.422 840.357 90.379 1030.456 980.596 880.659 920.544 840.685 1060.665 1090.556 88
TextureNetpermissive0.566 960.672 900.664 960.671 830.494 950.719 980.445 700.678 820.411 1060.396 990.935 860.356 980.225 720.412 1000.535 890.565 950.636 1000.464 1020.794 940.680 1060.568 82
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 970.648 920.700 820.770 560.586 760.687 1020.333 1010.650 860.514 820.475 850.906 1040.359 970.223 740.340 1050.442 1000.422 1080.668 900.501 950.708 1040.779 830.534 93
Pointnet++ & Featurepermissive0.557 980.735 700.661 980.686 770.491 960.744 950.392 900.539 1020.451 990.375 1020.946 630.376 950.205 810.403 1010.356 1050.553 960.643 970.497 960.824 900.756 920.515 97
GMLPs0.538 990.495 1100.693 870.647 920.471 990.793 760.300 1040.477 1060.505 840.358 1040.903 1060.327 1020.081 1110.472 930.529 910.448 1060.710 720.509 920.746 990.737 970.554 89
PanopticFusion-label0.529 1000.491 1110.688 910.604 1000.386 1060.632 1090.225 1140.705 780.434 1030.293 1100.815 1120.348 1000.241 680.499 880.669 740.507 990.649 940.442 1080.796 930.602 1130.561 85
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1010.676 880.591 1110.609 980.442 1020.774 850.335 1000.597 930.422 1050.357 1050.932 920.341 1010.094 1100.298 1070.528 920.473 1040.676 870.495 970.602 1120.721 1010.349 113
Online SegFusion0.515 1020.607 1000.644 1020.579 1030.434 1030.630 1100.353 980.628 910.440 1010.410 970.762 1160.307 1040.167 970.520 810.403 1030.516 980.565 1040.447 1060.678 1070.701 1030.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1030.558 1050.608 1090.424 1150.478 980.690 1010.246 1100.586 950.468 940.450 900.911 1020.394 910.160 1000.438 960.212 1120.432 1070.541 1100.475 1010.742 1000.727 990.477 104
PCNN0.498 1040.559 1040.644 1020.560 1050.420 1050.711 1000.229 1120.414 1070.436 1020.352 1060.941 780.324 1030.155 1010.238 1120.387 1040.493 1000.529 1110.509 920.813 920.751 940.504 99
Weakly-Openseg v30.489 1050.749 640.664 960.646 940.496 940.559 1140.122 1170.577 970.257 1170.364 1030.805 1130.198 1150.096 1090.510 840.496 960.361 1120.563 1050.359 1150.777 950.644 1100.532 95
3DMV0.484 1060.484 1120.538 1130.643 950.424 1040.606 1130.310 1020.574 980.433 1040.378 1000.796 1140.301 1050.214 780.537 790.208 1130.472 1050.507 1140.413 1110.693 1050.602 1130.539 91
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1070.577 1030.611 1070.356 1170.321 1140.715 990.299 1060.376 1110.328 1130.319 1080.944 720.285 1070.164 980.216 1150.229 1100.484 1020.545 1090.456 1040.755 980.709 1020.475 105
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1080.679 870.604 1100.578 1040.380 1070.682 1030.291 1070.106 1170.483 910.258 1150.920 990.258 1110.025 1150.231 1140.325 1060.480 1030.560 1070.463 1030.725 1020.666 1080.231 117
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1090.474 1130.623 1050.463 1110.366 1090.651 1060.310 1020.389 1100.349 1110.330 1070.937 830.271 1090.126 1060.285 1080.224 1110.350 1140.577 1030.445 1070.625 1100.723 1000.394 109
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1100.548 1070.548 1120.597 1020.363 1100.628 1110.300 1040.292 1120.374 1080.307 1090.881 1090.268 1100.186 900.238 1120.204 1140.407 1090.506 1150.449 1050.667 1080.620 1120.462 107
SurfaceConvPF0.442 1100.505 1090.622 1060.380 1160.342 1120.654 1050.227 1130.397 1090.367 1090.276 1120.924 960.240 1120.198 860.359 1040.262 1080.366 1100.581 1020.435 1090.640 1090.668 1070.398 108
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1120.437 1150.646 1010.474 1100.369 1080.645 1070.353 980.258 1140.282 1150.279 1110.918 1010.298 1060.147 1050.283 1090.294 1070.487 1010.562 1060.427 1100.619 1110.633 1110.352 112
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1130.525 1080.647 1000.522 1060.324 1130.488 1170.077 1180.712 760.353 1100.401 980.636 1180.281 1080.176 930.340 1050.565 870.175 1180.551 1080.398 1120.370 1180.602 1130.361 111
SPLAT Netcopyleft0.393 1140.472 1140.511 1140.606 990.311 1150.656 1040.245 1110.405 1080.328 1130.197 1160.927 950.227 1140.000 1190.001 1190.249 1090.271 1170.510 1120.383 1140.593 1130.699 1040.267 115
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1150.297 1170.491 1150.432 1140.358 1110.612 1120.274 1080.116 1160.411 1060.265 1130.904 1050.229 1130.079 1120.250 1100.185 1150.320 1150.510 1120.385 1130.548 1140.597 1160.394 109
PointNet++permissive0.339 1160.584 1020.478 1160.458 1120.256 1170.360 1180.250 1090.247 1150.278 1160.261 1140.677 1170.183 1160.117 1070.212 1160.145 1170.364 1110.346 1180.232 1180.548 1140.523 1170.252 116
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SSC-UNetpermissive0.308 1170.353 1160.290 1180.278 1180.166 1180.553 1150.169 1160.286 1130.147 1180.148 1180.908 1030.182 1170.064 1130.023 1180.018 1190.354 1130.363 1160.345 1160.546 1160.685 1050.278 114
ScanNetpermissive0.306 1180.203 1180.366 1170.501 1070.311 1150.524 1160.211 1150.002 1190.342 1120.189 1170.786 1150.145 1180.102 1080.245 1110.152 1160.318 1160.348 1170.300 1170.460 1170.437 1180.182 118
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1190.000 1190.041 1190.172 1190.030 1190.062 1190.001 1190.035 1180.004 1190.051 1190.143 1190.019 1190.003 1180.041 1170.050 1180.003 1190.054 1190.018 1190.005 1190.264 1190.082 119


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.901 11.000 10.978 210.928 30.879 10.962 30.882 30.749 340.947 30.912 10.802 30.753 150.820 21.000 10.984 40.919 50.894 31.000 10.815 12
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
OneFormer3Dcopyleft0.896 21.000 11.000 10.913 60.858 60.951 70.786 120.837 170.916 120.908 20.778 70.803 40.750 131.000 10.976 50.926 40.882 70.995 450.849 1
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
MG-Former0.887 31.000 10.991 120.837 240.801 210.935 160.887 20.857 90.946 40.891 80.748 150.805 30.739 151.000 10.993 20.809 550.876 141.000 10.842 3
UniPerception0.884 41.000 10.979 180.872 160.869 30.892 250.806 90.890 50.835 280.892 70.755 120.811 10.779 100.955 450.951 60.876 220.914 10.997 370.840 4
InsSSM0.883 51.000 10.996 40.800 370.865 40.960 40.808 80.852 140.940 60.899 60.785 40.810 20.700 191.000 10.912 170.851 400.895 20.997 370.827 6
Competitor-SPFormer0.881 61.000 11.000 10.845 220.854 70.962 20.714 190.857 100.904 140.902 40.782 60.789 90.662 251.000 10.988 30.874 250.886 60.997 370.847 2
TST3D0.879 71.000 10.994 70.921 50.807 200.939 130.771 130.887 60.923 100.862 150.722 200.768 120.756 121.000 10.910 270.904 70.836 240.999 360.824 8
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
SIM3D0.878 81.000 10.972 230.863 180.817 180.952 60.821 60.783 280.890 170.902 50.735 180.797 50.799 91.000 10.931 140.893 130.853 201.000 10.792 15
EV3D0.877 91.000 10.996 60.873 140.854 80.950 80.691 230.783 290.926 70.889 110.754 130.794 80.820 21.000 10.912 170.900 90.860 181.000 10.779 18
Spherical Mask(CtoF)0.875 101.000 10.991 130.873 140.850 90.946 100.691 230.752 330.926 70.889 100.759 100.794 70.820 21.000 10.912 170.900 90.878 111.000 10.769 20
TD3Dpermissive0.875 101.000 10.976 220.877 120.783 270.970 10.889 10.828 180.945 50.803 200.713 220.720 220.709 171.000 10.936 120.934 30.873 151.000 10.791 16
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Queryformer0.874 121.000 10.978 200.809 350.876 20.936 150.702 200.716 390.920 110.875 140.766 80.772 110.818 61.000 10.995 10.916 60.892 41.000 10.767 21
SoftGroup++0.874 121.000 10.972 240.947 10.839 120.898 240.556 380.913 20.881 200.756 220.828 20.748 170.821 11.000 10.937 110.937 10.887 51.000 10.821 9
Mask3D0.870 141.000 10.985 150.782 440.818 170.938 140.760 140.749 340.923 90.877 130.760 90.785 100.820 21.000 10.912 170.864 340.878 110.983 510.825 7
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ExtMask3D0.867 151.000 11.000 10.756 510.816 190.940 120.795 100.760 320.862 220.888 120.739 160.763 130.774 111.000 10.929 150.878 210.879 91.000 10.819 11
SoftGrouppermissive0.865 161.000 10.969 250.860 190.860 50.913 200.558 350.899 30.911 130.760 210.828 10.736 190.802 80.981 420.919 160.875 230.877 131.000 10.820 10
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
MAFT0.860 171.000 10.990 140.810 340.829 130.949 90.809 70.688 450.836 270.904 30.751 140.796 60.741 141.000 10.864 370.848 420.837 221.000 10.828 5
SPFormerpermissive0.851 181.000 10.994 80.806 360.774 290.942 110.637 270.849 150.859 240.889 90.720 210.730 200.665 241.000 10.911 240.868 320.873 161.000 10.796 14
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
IPCA-Inst0.851 181.000 10.968 260.884 110.842 110.862 370.693 220.812 230.888 190.677 340.783 50.698 230.807 71.000 10.911 240.865 330.865 171.000 10.757 24
Mask3D_evaluation0.843 201.000 10.955 310.847 210.795 230.932 170.750 160.780 300.891 160.818 170.737 170.633 320.703 181.000 10.902 290.870 280.820 250.941 590.805 13
ISBNetpermissive0.835 211.000 10.950 320.731 530.819 150.918 180.790 110.740 360.851 260.831 160.661 300.742 180.650 281.000 10.937 100.814 540.836 231.000 10.765 22
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
SphereSeg0.835 211.000 10.963 290.891 90.794 240.954 50.822 50.710 400.961 20.721 260.693 280.530 450.653 271.000 10.867 360.857 370.859 190.991 480.771 19
GraphCut0.832 231.000 10.922 460.724 550.798 220.902 230.701 210.856 120.859 230.715 270.706 230.748 160.640 391.000 10.934 130.862 350.880 81.000 10.729 27
TopoSeg0.832 231.000 10.981 170.933 20.819 160.826 460.524 440.841 160.811 320.681 330.759 110.687 240.727 160.981 420.911 240.883 170.853 211.000 10.756 25
PBNetpermissive0.825 251.000 10.963 280.837 260.843 100.865 320.822 40.647 480.878 210.733 240.639 370.683 250.650 281.000 10.853 380.870 290.820 261.000 10.744 26
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
SSEC0.820 261.000 10.983 160.924 40.826 140.817 490.415 530.899 40.793 360.673 350.731 190.636 300.653 261.000 10.939 90.804 570.878 101.000 10.780 17
DKNet0.815 271.000 10.930 380.844 230.765 330.915 190.534 420.805 250.805 340.807 190.654 310.763 140.650 281.000 10.794 500.881 180.766 301.000 10.758 23
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
RPGN0.806 281.000 10.992 100.789 390.723 460.891 260.650 260.810 240.832 290.665 370.699 260.658 260.700 191.000 10.881 310.832 460.774 280.997 370.613 47
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Box2Mask0.803 291.000 10.962 300.874 130.707 500.887 290.686 250.598 530.961 10.715 280.694 270.469 500.700 191.000 10.912 170.902 80.753 350.997 370.637 41
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
HAISpermissive0.803 291.000 10.994 80.820 300.759 340.855 380.554 390.882 70.827 310.615 430.676 290.638 290.646 371.000 10.912 170.797 600.767 290.994 460.726 28
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
Mask-Group0.792 311.000 10.968 270.812 310.766 320.864 330.460 470.815 220.888 180.598 470.651 340.639 280.600 450.918 480.941 70.896 120.721 421.000 10.723 29
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 321.000 10.996 40.829 290.767 310.889 280.600 300.819 210.770 410.594 480.620 410.541 420.700 191.000 10.941 70.889 150.763 311.000 10.526 57
SSTNetpermissive0.789 331.000 10.840 600.888 100.717 470.835 420.717 180.684 460.627 560.724 250.652 330.727 210.600 451.000 10.912 170.822 490.757 341.000 10.691 35
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
GICN0.788 341.000 10.978 190.867 170.781 280.833 430.527 430.824 190.806 330.549 560.596 440.551 380.700 191.000 10.853 380.935 20.733 391.000 10.651 38
DENet0.786 351.000 10.929 390.736 520.750 400.720 620.755 150.934 10.794 350.590 490.561 500.537 430.650 281.000 10.882 300.804 580.789 271.000 10.719 30
DANCENET0.786 351.000 10.936 350.783 420.737 430.852 400.742 170.647 480.765 430.811 180.624 400.579 350.632 421.000 10.909 280.898 110.696 470.944 550.601 50
DualGroup0.782 371.000 10.927 400.811 320.772 300.853 390.631 290.805 250.773 380.613 440.611 420.610 330.650 280.835 590.881 310.879 200.750 371.000 10.675 36
PointGroup0.778 381.000 10.900 500.798 380.715 480.863 340.493 450.706 410.895 150.569 540.701 240.576 360.639 401.000 10.880 330.851 390.719 430.997 370.709 32
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 391.000 10.900 510.860 190.728 450.869 300.400 540.857 110.774 370.568 550.701 250.602 340.646 370.933 470.843 410.890 140.691 510.997 370.709 31
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
AOIA0.767 401.000 10.937 340.810 330.740 420.906 210.550 400.800 270.706 480.577 530.624 390.544 410.596 500.857 510.879 350.880 190.750 360.992 470.658 37
DD-UNet+Group0.764 411.000 10.897 530.837 250.753 370.830 450.459 490.824 190.699 500.629 410.653 320.438 530.650 281.000 10.880 330.858 360.690 521.000 10.650 39
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.762 421.000 10.923 430.765 470.785 260.905 220.600 300.655 470.646 550.683 320.647 350.530 440.650 281.000 10.824 430.830 470.693 500.944 550.644 40
Dyco3Dcopyleft0.761 431.000 10.935 360.893 80.752 390.863 350.600 300.588 540.742 450.641 390.633 380.546 400.550 520.857 510.789 520.853 380.762 320.987 490.699 33
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OccuSeg+instance0.742 441.000 10.923 430.785 400.745 410.867 310.557 360.578 570.729 460.670 360.644 360.488 480.577 511.000 10.794 500.830 470.620 601.000 10.550 53
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RWSeg0.739 451.000 10.899 520.759 490.753 380.823 470.282 590.691 440.658 530.582 520.594 450.547 390.628 431.000 10.795 490.868 310.728 411.000 10.692 34
3D-MPA0.737 461.000 10.933 370.785 400.794 250.831 440.279 610.588 540.695 510.616 420.559 510.556 370.650 281.000 10.809 470.875 240.696 481.000 10.608 49
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
MTML0.731 471.000 10.992 100.779 460.609 590.746 570.308 580.867 80.601 590.607 450.539 540.519 460.550 521.000 10.824 430.869 300.729 401.000 10.616 45
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
OSIS0.725 481.000 10.885 560.653 610.657 560.801 500.576 340.695 430.828 300.698 300.534 550.457 520.500 590.857 510.831 420.841 440.627 581.000 10.619 44
SSEN0.724 491.000 10.926 410.781 450.661 540.845 410.596 330.529 600.764 440.653 380.489 610.461 510.500 590.859 500.765 530.872 270.761 331.000 10.577 51
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.718 501.000 10.945 330.901 70.754 360.817 480.460 470.700 420.772 390.688 310.568 490.000 720.500 590.981 420.606 630.872 260.740 381.000 10.614 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Sparse R-CNN0.714 511.000 10.926 420.694 560.699 520.890 270.636 280.516 610.693 520.743 230.588 460.369 570.601 440.594 650.800 480.886 160.676 530.986 500.546 54
SALoss-ResNet0.695 521.000 10.855 580.579 660.589 610.735 600.484 460.588 540.856 250.634 400.571 480.298 580.500 591.000 10.824 430.818 500.702 460.935 620.545 55
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
PanopticFusion-inst0.693 531.000 10.852 590.655 600.616 580.788 520.334 560.763 310.771 400.457 660.555 520.652 270.518 560.857 510.765 530.732 660.631 560.944 550.577 52
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Occipital-SCS0.688 541.000 10.913 470.730 540.737 440.743 590.442 500.855 130.655 540.546 570.546 530.263 600.508 580.889 490.568 640.771 630.705 450.889 650.625 43
3D-BoNet0.687 551.000 10.887 550.836 270.587 620.643 690.550 400.620 500.724 470.522 610.501 590.243 610.512 571.000 10.751 550.807 560.661 550.909 640.612 48
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
ClickSeg_Instance0.685 561.000 10.818 620.600 640.715 490.795 510.557 360.533 590.591 610.601 460.519 570.429 550.638 410.938 460.706 580.817 520.624 590.944 550.502 59
PCJC0.684 571.000 10.895 540.757 500.659 550.862 360.189 680.739 370.606 580.712 290.581 470.515 470.650 280.857 510.357 690.785 610.631 570.889 650.635 42
SPG_WSIS0.678 581.000 10.880 570.836 270.701 510.727 610.273 630.607 520.706 490.541 590.515 580.174 640.600 450.857 510.716 570.846 430.711 441.000 10.506 58
One_Thing_One_Clickpermissive0.675 591.000 10.823 610.782 430.621 570.766 540.211 650.736 380.560 630.586 500.522 560.636 310.453 630.641 630.853 380.850 410.694 490.997 370.411 64
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
SegGroup_inspermissive0.637 601.000 10.923 450.593 650.561 630.746 580.143 700.504 620.766 420.485 640.442 620.372 560.530 550.714 600.815 460.775 620.673 541.000 10.431 63
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MASCpermissive0.615 610.711 680.802 630.540 670.757 350.777 530.029 710.577 580.588 620.521 620.600 430.436 540.534 540.697 610.616 620.838 450.526 620.980 520.534 56
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
UNet-backbone0.605 621.000 10.909 480.764 480.603 600.704 630.415 520.301 670.548 640.461 650.394 630.267 590.386 650.857 510.649 610.817 510.504 640.959 530.356 67
3D-SISpermissive0.558 631.000 10.773 640.614 630.503 660.691 650.200 660.412 630.498 670.546 580.311 680.103 680.600 450.857 510.382 660.799 590.445 700.938 610.371 65
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.544 640.500 710.655 700.661 590.663 530.765 550.432 510.214 700.612 570.584 510.499 600.204 630.286 690.429 680.655 600.650 710.539 610.950 540.499 60
Hier3Dcopyleft0.540 651.000 10.727 650.626 620.467 690.693 640.200 660.412 630.480 680.528 600.318 670.077 710.600 450.688 620.382 660.768 640.472 660.941 590.350 68
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
Region-18class0.497 660.250 730.902 490.689 570.540 640.747 560.276 620.610 510.268 720.489 630.348 640.000 720.243 720.220 710.663 590.814 530.459 680.928 630.496 61
Sem_Recon_ins0.484 670.764 670.608 720.470 690.521 650.637 700.311 570.218 690.348 710.365 700.223 690.222 620.258 700.629 640.734 560.596 720.509 630.858 680.444 62
tmp0.474 681.000 10.727 650.433 710.481 680.673 670.022 730.380 650.517 660.436 680.338 660.128 660.343 670.429 680.291 710.728 670.473 650.833 690.300 70
SemRegionNet-20cls0.470 691.000 10.727 650.447 700.481 670.678 660.024 720.380 650.518 650.440 670.339 650.128 660.350 660.429 680.212 720.711 680.465 670.833 690.290 71
ASIS0.422 700.333 720.707 680.676 580.401 700.650 680.350 550.177 710.594 600.376 690.202 700.077 700.404 640.571 660.197 730.674 700.447 690.500 720.260 72
3D-BEVIS0.401 710.667 690.687 690.419 720.137 730.587 710.188 690.235 680.359 700.211 720.093 730.080 690.311 680.571 660.382 660.754 650.300 720.874 670.357 66
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sgpn_scannet0.390 720.556 700.636 710.493 680.353 710.539 720.271 640.160 720.450 690.359 710.178 710.146 650.250 710.143 720.347 700.698 690.436 710.667 710.331 69
MaskRCNN 2d->3d Proj0.261 730.903 660.081 730.008 730.233 720.175 730.280 600.106 730.150 730.203 730.175 720.480 490.218 730.143 720.542 650.404 730.153 730.393 730.049 73


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3