Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
ODIN - Sem200permissive0.368 40.562 40.297 40.207 40.800 100.669 130.940 100.575 30.654 90.749 80.487 30.589 10.609 20.001 120.769 120.561 80.752 60.274 50.682 60.926 130.554 40.833 140.921 40.389 20.599 100.591 10.787 80.550 20.657 50.610 40.334 130.803 80.661 40.090 60.408 70.373 150.000 10.912 20.796 170.501 170.169 80.000 70.641 40.196 10.380 170.397 30.641 50.740 90.862 10.213 30.857 60.685 70.216 10.578 160.557 100.685 50.523 80.581 160.312 30.000 30.065 150.000 170.871 30.359 80.988 20.321 20.090 160.704 60.631 20.393 150.246 110.000 10.482 80.565 150.000 40.000 90.000 10.181 10.913 10.468 160.632 80.642 50.259 110.000 170.832 10.663 10.000 30.081 10.000 10.048 20.000 40.376 10.898 70.000 10.157 10.000 100.870 30.000 170.400 50.265 40.242 50.227 60.539 10.370 140.214 130.129 100.000 40.131 100.054 170.000 30.358 90.491 10.462 40.434 30.346 150.454 150.316 20.814 10.828 20.000 10.000 170.220 170.612 110.000 10.000 110.373 20.378 20.000 70.429 40.152 110.077 90.166 40.202 50.000 10.000 50.441 140.000 10.440 60.000 10.000 120.655 10.000 10.626 70.000 10.000 10.228 90.487 10.784 160.000 90.301 30.000 10.426 20.000 10.108 90.460 130.590 40.775 10.088 60.119 150.485 90.791 10.000 120.000 10.256 170.000 20.000 20.000 110.885 30.303 10.000 10.000 10.127 160.000 70.000 30.894 20.000 1
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
BFANet ScanNet200permissive0.360 50.553 70.293 50.193 50.827 40.689 40.970 30.528 130.661 60.753 60.436 80.378 80.469 150.042 70.810 30.654 20.760 40.266 100.659 100.973 40.574 30.849 110.897 50.382 30.546 130.372 90.698 140.491 90.617 100.526 100.436 10.764 140.476 170.101 50.409 60.585 100.000 10.835 60.901 30.810 50.102 140.000 70.688 20.096 60.483 100.264 120.612 90.591 160.358 20.161 60.863 50.707 40.128 40.814 20.669 40.629 100.563 40.651 140.258 50.000 30.194 100.494 90.806 120.394 60.953 50.000 70.233 10.757 40.508 60.556 40.476 40.000 10.573 50.741 60.000 40.000 90.000 10.000 60.000 170.852 50.678 30.616 60.460 50.338 30.710 50.534 50.000 30.025 40.000 10.043 30.000 40.056 120.493 170.000 10.000 100.109 50.785 70.590 60.298 130.282 30.143 130.262 40.053 110.526 40.337 50.215 10.000 40.135 90.510 40.000 30.596 40.043 140.511 30.321 120.459 30.772 20.124 130.060 140.266 60.000 10.574 90.568 90.653 100.000 10.093 10.298 40.239 30.000 70.516 20.129 140.284 20.000 80.431 10.000 10.000 50.848 60.000 10.492 10.000 10.376 30.522 60.000 10.469 170.000 10.000 10.330 60.151 100.875 140.000 90.254 40.000 10.000 90.000 10.088 130.661 10.481 50.255 120.105 10.139 90.666 50.641 50.000 120.000 10.614 20.000 20.000 20.000 110.921 20.000 30.000 10.000 10.497 10.000 70.000 30.000 110.000 1
Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis. CVPR 2025
DITR0.449 10.629 10.392 10.289 10.851 20.727 10.969 40.600 10.741 20.805 10.519 10.480 30.636 10.014 100.867 10.680 10.849 10.318 30.753 20.982 20.508 120.871 60.934 20.482 10.596 110.551 20.804 40.508 60.729 10.718 20.417 40.886 10.664 30.000 170.500 20.698 10.000 10.913 10.901 30.766 70.113 120.000 70.617 50.168 20.650 10.477 10.826 10.962 10.348 30.300 10.947 10.776 20.160 30.889 10.651 50.720 20.700 10.728 30.317 10.000 30.238 50.664 10.869 40.514 20.998 10.313 30.138 100.815 10.828 10.622 20.421 50.000 10.823 10.817 10.000 40.000 90.000 10.157 20.866 30.991 10.805 10.660 40.571 20.043 120.709 60.642 30.000 30.000 70.000 10.028 100.018 30.134 30.967 20.000 10.150 20.130 20.949 10.855 10.580 10.262 50.314 10.230 50.222 40.498 50.367 10.153 30.869 10.334 20.397 80.000 30.904 10.486 21.000 10.423 40.484 10.632 60.716 10.733 20.862 10.000 10.433 140.710 10.851 20.000 10.034 40.315 30.385 10.000 70.001 90.268 90.066 110.000 80.278 40.000 10.978 10.839 80.000 10.448 40.000 10.579 10.403 120.000 10.647 30.000 10.000 10.411 30.315 60.904 70.420 10.392 20.000 10.091 60.000 10.128 30.564 30.591 30.568 20.079 90.139 91.000 10.714 30.178 10.000 10.606 30.000 20.000 20.148 60.983 10.000 30.000 10.000 10.374 20.000 70.000 30.662 40.000 1
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.851 20.687 60.971 20.586 20.755 10.752 70.505 20.404 70.575 50.000 140.848 20.616 40.761 30.349 10.738 30.978 30.546 60.860 80.926 30.346 40.654 30.384 70.828 10.523 40.699 30.583 60.387 70.822 30.688 20.118 40.474 30.603 50.000 10.832 80.903 20.753 90.140 100.000 70.650 30.109 50.520 30.457 20.497 100.871 40.281 40.192 50.887 40.748 30.168 20.727 70.733 20.740 10.644 20.714 50.190 130.000 30.256 30.449 100.914 10.514 20.759 150.337 10.172 60.692 70.617 30.636 10.325 70.000 10.641 20.782 20.000 40.065 30.000 10.000 60.842 40.903 20.661 40.662 30.612 10.405 20.731 40.566 40.000 30.000 70.000 10.017 150.301 10.088 70.941 30.000 10.077 40.000 100.717 80.790 20.310 120.026 170.264 40.349 10.220 50.397 120.366 20.115 130.000 40.337 10.463 60.000 30.531 50.218 40.593 20.455 20.469 20.708 30.210 40.592 40.108 160.000 10.728 10.682 30.671 80.000 10.000 110.407 10.136 40.022 30.575 10.436 40.259 30.428 10.048 60.000 10.000 50.879 50.000 10.480 20.000 10.133 90.597 20.000 10.690 20.000 10.000 10.009 160.000 150.921 30.000 90.151 50.000 10.000 90.000 10.109 80.494 110.622 20.394 90.073 120.141 70.798 20.528 80.026 50.000 10.551 50.000 20.000 20.134 70.717 80.000 30.000 10.000 10.188 40.000 70.000 30.791 30.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PPT-SpUNet-F.T.0.332 120.556 60.270 70.123 140.816 60.682 90.946 60.549 100.657 80.756 50.459 70.376 90.550 110.001 120.807 40.616 40.727 120.267 90.691 50.942 110.530 90.872 50.874 80.330 80.542 140.374 80.792 50.400 140.673 40.572 70.433 20.793 90.623 70.008 160.351 100.594 80.000 10.783 130.876 70.833 40.213 60.000 70.537 80.091 70.519 40.304 80.620 80.942 20.264 50.124 80.855 70.695 50.086 80.646 100.506 160.658 70.535 60.715 40.314 20.000 30.241 40.608 30.897 20.359 80.858 110.000 70.076 170.611 110.392 120.509 70.378 60.000 10.579 40.565 150.000 40.000 90.000 10.000 60.755 70.806 90.661 40.572 130.350 90.181 70.660 120.300 140.000 30.000 70.000 10.023 120.000 40.042 140.930 40.000 10.000 100.077 70.584 90.392 100.339 90.185 100.171 120.308 20.006 130.563 30.256 80.150 40.000 40.002 160.345 120.000 30.045 140.197 50.063 110.323 110.453 40.600 80.163 110.037 150.349 40.000 10.672 30.679 40.753 50.000 10.000 110.000 120.117 60.000 70.000 100.291 80.000 120.000 80.039 70.000 10.000 50.899 20.000 10.374 110.000 10.000 120.545 50.000 10.634 50.000 10.000 10.074 130.223 80.914 60.000 90.021 90.000 10.000 90.000 10.112 60.498 100.649 10.383 100.095 20.135 120.449 110.432 120.008 90.000 10.518 70.000 20.000 20.000 110.796 50.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OA-CNN-L_ScanNet2000.333 110.558 50.269 90.124 130.821 50.703 30.946 60.569 50.662 40.748 90.487 30.455 40.572 70.000 140.789 90.534 90.736 90.271 80.713 40.949 60.498 140.877 30.860 110.332 70.706 10.474 30.788 70.406 130.637 60.495 110.355 110.805 70.592 120.015 130.396 80.602 60.000 10.799 110.876 70.713 130.276 20.000 70.493 130.080 90.448 140.363 50.661 40.833 60.262 60.125 70.823 120.665 90.076 90.720 80.557 100.637 90.517 90.672 100.227 80.000 30.158 120.496 80.843 110.352 100.835 130.000 70.103 140.711 50.527 40.526 60.320 80.000 10.568 60.625 110.067 10.000 90.000 10.001 50.806 60.836 70.621 100.591 80.373 80.314 50.668 100.398 90.003 20.000 70.000 10.016 160.024 20.043 130.906 60.000 10.052 60.000 100.384 120.330 120.342 80.100 120.223 70.183 130.112 70.476 60.313 70.130 90.196 30.112 120.370 110.000 30.234 120.071 90.160 70.403 60.398 130.492 140.197 60.076 130.272 50.000 10.200 160.560 100.735 70.000 10.000 110.000 120.110 80.002 60.021 80.412 50.000 120.000 80.000 110.000 10.000 50.794 110.000 10.445 50.000 10.022 100.509 70.000 10.517 130.000 10.000 10.001 170.245 70.915 50.024 60.089 70.000 10.262 30.000 10.103 110.524 70.392 110.515 40.013 170.251 40.411 130.662 40.001 110.000 10.473 120.000 20.000 20.150 50.699 90.000 30.000 10.000 10.166 60.000 70.024 20.000 110.000 1
CeCo0.340 70.551 90.247 130.181 60.784 130.661 140.939 130.564 60.624 130.721 120.484 50.429 50.575 50.027 80.774 110.503 140.753 50.242 130.656 110.945 90.534 70.865 70.860 110.177 170.616 80.400 50.818 20.579 10.615 110.367 140.408 60.726 150.633 50.162 10.360 90.619 30.000 10.828 90.873 90.924 20.109 130.083 30.564 60.057 150.475 120.266 110.781 20.767 70.257 70.100 110.825 110.663 100.048 150.620 130.551 120.595 130.532 70.692 80.246 60.000 30.213 60.615 20.861 70.376 70.900 80.000 70.102 150.660 80.321 150.547 50.226 130.000 10.311 130.742 50.011 30.006 80.000 10.000 60.546 150.824 80.345 140.665 20.450 60.435 10.683 80.411 80.338 10.000 70.000 10.030 90.000 40.068 90.892 80.000 10.063 50.000 100.257 130.304 130.387 60.079 140.228 60.190 110.000 140.586 10.347 40.133 70.000 40.037 130.377 100.000 30.384 80.006 160.003 130.421 50.410 100.643 50.171 90.121 90.142 120.000 10.510 110.447 110.474 140.000 10.000 110.286 50.083 110.000 70.000 100.603 10.096 70.063 50.000 110.000 10.000 50.898 30.000 10.429 70.000 10.400 20.550 40.000 10.633 60.000 10.000 10.377 50.000 150.916 40.000 90.000 110.000 10.000 90.000 10.102 120.499 90.296 140.463 60.089 50.304 10.740 30.401 160.010 70.000 10.560 40.000 20.000 20.709 20.652 100.000 30.000 10.000 10.143 80.000 70.000 30.609 50.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.852 10.710 20.973 10.572 40.719 30.795 20.477 60.506 20.601 30.000 140.804 50.646 30.804 20.344 20.777 10.984 10.671 10.879 20.936 10.342 50.632 70.449 40.817 30.475 100.723 20.798 10.376 80.832 20.693 10.031 90.564 10.510 130.000 10.893 30.905 10.672 160.314 10.000 70.718 10.153 30.542 20.397 30.726 30.752 80.252 80.226 20.916 20.800 10.047 160.807 30.769 10.709 30.630 30.769 10.217 100.000 30.285 10.598 40.846 100.535 10.956 40.000 70.137 110.784 20.464 70.463 130.230 120.000 10.598 30.662 90.000 40.087 20.000 10.135 30.900 20.780 110.703 20.741 10.571 20.149 90.697 70.646 20.000 30.076 20.000 10.025 110.000 40.106 60.981 10.000 10.043 70.113 40.888 20.248 150.404 40.252 60.314 10.220 70.245 20.466 70.366 20.159 20.000 40.149 80.690 20.000 30.531 50.253 30.285 60.460 10.440 50.813 10.230 30.283 60.159 110.000 10.728 10.666 50.958 10.000 10.021 50.252 80.118 50.000 70.445 30.223 100.285 10.194 30.390 20.000 10.475 40.842 70.000 10.455 30.000 10.250 70.458 80.000 10.865 10.000 10.000 10.635 10.359 50.972 10.087 30.447 10.000 10.000 90.000 10.129 20.532 60.446 80.503 50.071 130.135 120.699 40.717 20.097 20.000 10.665 10.000 20.000 21.000 10.752 60.000 30.000 10.000 10.142 90.200 10.259 11.000 10.000 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
PonderV2 ScanNet2000.346 60.552 80.270 80.175 90.810 70.682 90.950 50.560 70.641 100.761 30.398 130.357 100.570 80.113 20.804 50.603 60.750 70.283 40.681 70.952 50.548 50.874 40.852 130.290 120.700 20.356 110.792 50.445 120.545 130.436 120.351 120.787 100.611 80.050 80.290 140.519 120.000 10.825 100.888 50.842 30.259 30.100 20.558 70.070 120.497 70.247 140.457 110.889 30.248 90.106 100.817 130.691 60.094 70.729 60.636 60.620 120.503 110.660 130.243 70.000 30.212 70.590 50.860 80.400 50.881 90.000 70.202 20.622 100.408 110.499 80.261 100.000 10.385 100.636 100.000 40.000 90.000 10.000 60.433 160.843 60.660 60.574 120.481 40.336 40.677 90.486 60.000 30.030 30.000 10.034 60.000 40.080 80.869 100.000 10.000 100.000 100.540 100.727 30.232 170.115 110.186 100.193 90.000 140.403 110.326 60.103 140.000 40.290 40.392 90.000 30.346 100.062 100.424 50.375 70.431 60.667 40.115 140.082 120.239 70.000 10.504 120.606 80.584 120.000 10.002 90.186 100.104 100.000 70.394 50.384 60.083 80.000 80.007 90.000 10.000 50.880 40.000 10.377 100.000 10.263 60.565 30.000 10.608 90.000 10.000 10.304 70.009 110.924 20.000 90.000 110.000 10.000 90.000 10.128 30.584 20.475 70.412 80.076 110.269 30.621 60.509 90.010 70.000 10.491 110.063 10.000 20.472 40.880 40.000 30.000 10.000 10.179 50.125 20.000 30.441 100.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
LGroundpermissive0.272 150.485 150.184 150.106 150.778 150.676 110.932 150.479 170.572 150.718 140.399 120.265 150.453 160.085 30.745 150.446 150.726 130.232 150.622 150.901 150.512 110.826 150.786 160.178 160.549 120.277 150.659 150.381 150.518 140.295 170.323 140.777 120.599 100.028 100.321 110.363 160.000 10.708 150.858 140.746 100.063 150.022 50.457 150.077 100.476 110.243 150.402 140.397 170.233 100.077 150.720 170.610 160.103 60.629 120.437 170.626 110.446 140.702 60.190 130.005 10.058 160.322 140.702 160.244 150.768 140.000 70.134 120.552 150.279 160.395 140.147 160.000 10.207 150.612 130.000 40.000 90.000 10.000 60.658 110.566 140.323 150.525 150.229 120.179 80.467 170.154 160.000 30.002 50.000 10.051 10.000 40.127 40.703 120.000 10.000 100.216 10.112 160.358 110.547 20.187 90.092 160.156 170.055 100.296 150.252 90.143 50.000 40.014 140.398 70.000 30.028 160.173 70.000 150.265 160.348 140.415 160.179 80.019 160.218 80.000 10.597 80.274 160.565 130.000 10.012 80.000 120.039 160.022 30.000 100.117 150.000 120.000 80.000 110.000 10.000 50.324 160.000 10.384 90.000 10.000 120.251 170.000 10.566 110.000 10.000 10.066 140.404 40.886 130.199 20.000 110.000 10.059 70.000 10.136 10.540 50.127 170.295 110.085 70.143 60.514 70.413 150.000 120.000 10.498 80.000 20.000 20.000 110.623 120.000 30.000 10.000 10.132 150.000 70.000 30.000 110.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
AWCS0.305 140.508 140.225 140.142 110.782 140.634 170.937 140.489 150.578 140.721 120.364 150.355 110.515 120.023 90.764 140.523 110.707 140.264 110.633 140.922 140.507 130.886 10.804 150.179 150.436 160.300 120.656 160.529 30.501 150.394 130.296 160.820 50.603 90.131 30.179 170.619 30.000 10.707 160.865 130.773 60.171 70.010 60.484 140.063 130.463 130.254 130.332 160.649 110.220 110.100 110.729 150.613 150.071 130.582 140.628 70.702 40.424 150.749 20.137 150.000 30.142 130.360 130.863 60.305 140.877 100.000 70.173 50.606 120.337 140.478 120.154 150.000 10.253 140.664 80.000 40.000 90.000 10.000 60.626 130.782 100.302 160.602 70.185 130.282 60.651 130.317 130.000 30.000 70.000 10.022 130.000 40.154 20.876 90.000 10.014 90.063 90.029 170.553 70.467 30.084 130.124 140.157 160.049 120.373 130.252 90.097 150.000 40.219 70.542 30.000 30.392 70.172 80.000 150.339 90.417 80.533 130.093 150.115 100.195 90.000 10.516 100.288 150.741 60.000 10.001 100.233 90.056 140.000 70.159 60.334 70.077 90.000 80.000 110.000 10.000 50.749 130.000 10.411 80.000 10.008 110.452 100.000 10.595 100.000 10.000 10.220 100.006 120.894 120.006 80.000 110.000 10.000 90.000 10.112 60.504 80.404 100.551 30.093 40.129 140.484 100.381 170.000 120.000 10.396 140.000 20.000 20.620 30.402 170.000 30.000 10.000 10.142 90.000 70.000 30.512 90.000 1
: Long-Tailed 3D Semantic Segmentation with Adaptive Weight Constraint and Sampling. ICRA 2024
Minkowski 34Dpermissive0.253 160.463 160.154 170.102 160.771 160.650 160.932 150.483 160.571 160.710 150.331 160.250 160.492 140.044 60.703 160.419 170.606 170.227 160.621 160.865 170.531 80.771 170.813 140.291 110.484 150.242 160.612 170.282 170.440 170.351 150.299 150.622 160.593 110.027 110.293 130.310 170.000 10.757 140.858 140.737 120.150 90.164 10.368 170.084 80.381 160.142 170.357 150.720 100.214 120.092 140.724 160.596 170.056 140.655 90.525 140.581 150.352 170.594 150.056 170.000 30.014 170.224 150.772 150.205 170.720 160.000 70.159 70.531 160.163 170.294 160.136 170.000 10.169 160.589 140.000 40.000 90.000 10.002 40.663 100.466 170.265 170.582 100.337 100.016 150.559 150.084 170.000 30.000 70.000 10.036 50.000 40.125 50.670 130.000 10.102 30.071 80.164 150.406 90.386 70.046 160.068 170.159 150.117 60.284 160.111 160.094 160.000 40.000 170.197 160.000 30.044 150.013 150.002 140.228 170.307 170.588 110.025 170.545 50.134 150.000 10.655 40.302 140.282 170.000 10.060 20.000 120.035 170.000 70.000 100.097 170.000 120.000 80.005 100.000 10.000 50.096 170.000 10.334 160.000 10.000 120.274 160.000 10.513 140.000 10.000 10.280 80.194 90.897 110.000 90.000 110.000 10.000 90.000 10.108 90.279 170.189 160.141 170.059 140.272 20.307 170.445 100.003 100.000 10.353 150.000 20.026 10.000 110.581 150.001 20.000 10.000 10.093 170.002 60.000 30.000 110.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrainpermissive0.249 170.455 170.171 160.079 170.766 170.659 150.930 170.494 140.542 170.700 170.314 170.215 170.430 170.121 10.697 170.441 160.683 160.235 140.609 170.895 160.476 150.816 160.770 170.186 140.634 60.216 170.734 90.340 160.471 160.307 160.293 170.591 170.542 150.076 70.205 160.464 140.000 10.484 170.832 160.766 70.052 160.000 70.413 160.059 140.418 150.222 160.318 170.609 140.206 130.112 90.743 140.625 140.076 90.579 150.548 130.590 140.371 160.552 170.081 160.003 20.142 130.201 160.638 170.233 160.686 170.000 70.142 90.444 170.375 130.247 170.198 140.000 10.128 170.454 170.019 20.097 10.000 10.000 60.553 140.557 150.373 130.545 140.164 140.014 160.547 160.174 150.000 30.002 50.000 10.037 40.000 40.063 110.664 140.000 10.000 100.130 20.170 140.152 160.335 100.079 140.110 150.175 140.098 90.175 170.166 150.045 170.207 20.014 140.465 50.000 30.001 170.001 170.046 120.299 150.327 160.537 120.033 160.012 170.186 100.000 10.205 150.377 130.463 160.000 10.058 30.000 120.055 150.041 10.000 100.105 160.000 120.000 80.000 110.000 10.000 50.398 150.000 10.308 170.000 10.000 120.319 150.000 10.543 120.000 10.000 10.062 150.004 130.862 150.000 90.000 110.000 10.000 90.000 10.123 50.316 160.225 150.250 130.094 30.180 50.332 140.441 110.000 120.000 10.310 160.000 20.000 20.000 110.592 140.000 30.000 10.000 10.203 30.000 70.000 30.000 110.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
L3DETR-ScanNet_2000.336 80.533 110.279 60.155 100.801 90.689 40.946 60.539 110.660 70.759 40.380 140.333 140.583 40.000 140.788 100.529 100.740 80.261 120.679 90.940 120.525 100.860 80.883 70.226 130.613 90.397 60.720 110.512 50.565 120.620 30.417 40.775 130.629 60.158 20.298 120.579 110.000 10.835 60.883 60.927 10.114 110.079 40.511 100.073 110.508 50.312 60.629 60.861 50.192 140.098 130.908 30.636 110.032 170.563 170.514 150.664 60.505 100.697 70.225 90.000 30.264 20.411 120.860 80.321 130.960 30.058 60.109 130.776 30.526 50.557 30.303 90.000 10.339 120.712 70.000 40.014 70.000 10.000 60.638 120.856 40.641 70.579 110.107 170.119 110.661 110.416 70.000 30.000 70.000 10.007 170.000 40.067 100.910 50.000 10.000 100.000 100.463 110.448 80.294 140.324 10.293 30.211 80.108 80.448 80.068 170.141 60.000 40.330 30.699 10.000 30.256 110.192 60.000 150.355 80.418 70.209 170.146 120.679 30.101 170.000 10.503 130.687 20.671 80.000 10.000 110.174 110.117 60.000 70.122 70.515 20.104 60.259 20.312 30.000 10.000 50.765 120.000 10.369 120.000 10.183 80.422 110.000 10.646 40.000 10.000 10.565 20.001 140.125 170.010 70.002 100.000 10.487 10.000 10.075 140.548 40.420 90.233 140.082 80.138 110.430 120.427 130.000 120.000 10.549 60.000 20.000 20.074 80.409 160.000 30.000 10.000 10.152 70.051 30.000 30.598 60.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
OctFormer ScanNet200permissive0.326 130.539 100.265 100.131 120.806 80.670 120.943 90.535 120.662 40.705 160.423 90.407 60.505 130.003 110.765 130.582 70.686 150.227 160.680 80.943 100.601 20.854 100.892 60.335 60.417 170.357 100.724 100.453 110.632 70.596 50.432 30.783 110.512 160.021 120.244 150.637 20.000 10.787 120.873 90.743 110.000 170.000 70.534 90.110 40.499 60.289 100.626 70.620 120.168 150.204 40.849 100.679 80.117 50.633 110.684 30.650 80.552 50.684 90.312 30.000 30.175 110.429 110.865 50.413 40.837 120.000 70.145 80.626 90.451 80.487 110.513 30.000 10.529 70.613 120.000 40.033 60.000 10.000 60.828 50.871 30.622 90.587 90.411 70.137 100.645 140.343 120.000 30.000 70.000 10.022 130.000 40.026 170.829 110.000 10.022 80.089 60.842 40.253 140.318 110.296 20.178 110.291 30.224 30.584 20.200 140.132 80.000 40.128 110.227 130.000 30.230 130.047 110.149 80.331 100.412 90.618 70.164 100.102 110.522 30.000 10.655 40.378 120.469 150.000 10.000 110.000 120.105 90.000 70.000 100.483 30.000 120.000 80.028 80.000 10.000 50.906 10.000 10.339 150.000 10.000 120.457 90.000 10.612 80.000 10.000 10.408 40.000 150.900 100.000 90.000 110.000 10.029 80.000 10.074 150.455 150.479 60.427 70.079 90.140 80.496 80.414 140.022 60.000 10.471 130.000 20.000 20.000 110.722 70.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
IMFSegNet0.334 90.532 130.251 110.179 70.799 110.683 80.940 100.555 80.631 120.740 110.406 100.336 130.560 90.062 40.795 70.518 120.733 100.274 50.646 130.947 80.458 170.848 130.862 100.305 100.649 40.284 130.713 130.495 80.626 80.527 90.363 90.820 50.574 130.010 140.411 40.597 70.000 10.842 40.873 90.704 140.246 40.000 70.495 110.041 160.486 90.305 70.444 120.604 150.134 160.055 160.852 90.633 130.076 90.792 40.612 80.573 170.484 120.668 120.216 120.000 30.197 90.518 60.784 130.344 120.908 70.283 40.190 40.599 130.439 100.496 100.569 20.000 10.392 90.776 30.000 40.064 40.000 10.000 60.710 90.756 120.508 110.512 160.159 150.034 140.773 20.363 100.000 30.000 70.000 10.032 70.000 40.029 160.648 160.000 10.000 100.000 100.830 60.595 40.274 150.228 80.206 80.188 120.000 140.425 90.237 110.123 120.000 40.277 60.214 140.003 10.610 20.044 120.124 100.320 140.408 110.594 90.196 70.213 70.139 130.000 10.615 60.618 60.839 30.000 10.014 60.260 60.080 120.025 20.000 100.139 120.135 50.035 70.000 110.000 10.793 20.799 90.000 10.357 130.000 10.369 50.359 130.000 10.512 150.000 10.000 10.120 120.424 20.903 80.027 50.091 60.000 10.245 50.000 10.073 160.457 140.340 120.191 150.021 150.009 170.322 150.608 60.060 30.000 10.494 100.000 20.000 20.068 100.624 110.000 30.000 10.000 10.139 110.047 40.000 30.561 70.000 1
GSTran0.334 100.533 120.250 120.179 80.799 110.684 70.940 100.554 90.633 110.741 100.405 110.337 120.560 90.060 50.794 80.517 130.732 110.274 50.647 120.948 70.459 160.849 110.864 90.306 90.648 50.282 140.717 120.496 70.624 90.533 80.363 90.821 40.573 140.009 150.411 40.593 90.000 10.841 50.873 90.704 140.242 50.000 70.495 110.041 160.487 80.304 80.439 130.613 130.133 170.055 160.853 80.634 120.075 120.791 50.601 90.574 160.483 130.669 110.217 100.000 30.198 80.518 60.782 140.345 110.914 60.273 50.193 30.598 140.440 90.499 80.570 10.000 10.381 110.775 40.000 40.063 50.000 10.000 60.712 80.752 130.507 120.512 160.158 160.036 130.773 20.361 110.000 30.000 70.000 10.032 70.000 40.032 150.651 150.000 10.000 100.000 100.831 50.595 40.273 160.229 70.200 90.191 100.000 140.425 90.233 120.125 110.000 40.279 50.213 150.003 10.608 30.044 120.138 90.321 120.408 110.593 100.198 50.205 80.139 130.000 10.614 70.609 70.838 40.000 10.014 60.260 60.080 120.010 50.000 100.136 130.136 40.047 60.000 110.000 10.787 30.797 100.000 10.354 140.000 10.372 40.357 140.000 10.507 160.000 10.000 10.121 110.423 30.903 80.028 40.089 70.000 10.252 40.000 10.072 170.465 120.340 120.189 160.020 160.011 160.320 160.606 70.060 30.000 10.496 90.000 20.000 20.070 90.618 130.000 30.000 10.000 10.139 110.047 40.000 30.558 80.000 1


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 25%head ap 25%common ap 25%tail ap 25%chairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
ODIN - Ins200permissive0.451 10.637 20.407 10.277 10.742 60.699 30.855 10.826 60.626 10.441 10.742 30.003 30.941 30.637 10.910 20.616 50.679 30.944 50.695 30.877 30.763 10.357 20.723 50.475 10.779 50.494 10.782 20.795 10.334 10.824 10.867 30.108 30.701 10.638 10.000 30.873 10.749 20.667 60.203 10.500 30.886 10.116 10.583 50.571 10.688 11.000 10.760 10.162 31.000 10.852 20.078 30.833 50.887 10.778 10.577 10.859 40.550 10.000 30.542 30.028 50.667 30.874 11.000 10.125 10.232 40.870 20.406 20.337 30.167 20.000 20.671 10.742 20.500 10.000 20.000 10.528 11.000 10.417 40.597 10.872 10.275 10.000 40.800 20.850 10.000 20.528 10.000 30.215 30.000 10.238 10.667 10.000 30.019 30.250 41.000 10.429 40.599 20.778 20.221 10.370 10.284 10.278 60.400 30.125 10.000 10.200 30.404 20.000 10.250 30.714 10.500 10.504 30.769 10.677 30.750 10.963 10.500 10.000 10.500 50.333 51.000 10.000 10.000 40.438 10.500 10.000 31.000 10.333 30.226 20.250 30.250 10.000 30.000 10.668 30.000 10.494 50.000 10.000 30.750 10.000 10.833 20.000 10.000 10.777 30.333 20.944 20.000 10.333 10.000 11.000 10.000 10.089 30.407 40.600 10.823 20.080 20.264 40.469 40.717 10.000 20.000 10.500 20.000 10.000 10.000 21.000 10.125 10.333 10.000 20.200 30.000 20.000 21.000 10.000 1
Mask3D Scannet2000.445 20.653 10.392 20.254 20.844 20.746 20.818 20.888 40.556 20.262 20.890 10.025 21.000 10.608 20.930 10.694 30.721 10.930 60.686 40.966 10.615 50.440 10.725 40.201 20.890 30.414 50.827 10.552 20.158 60.806 20.924 10.042 40.512 30.412 60.226 10.604 40.830 11.000 10.125 20.792 10.815 20.097 20.648 10.551 30.354 51.000 10.630 20.241 21.000 10.853 10.204 10.974 40.841 20.778 10.358 30.927 10.300 20.045 10.640 10.363 10.745 20.710 21.000 10.000 20.330 20.943 10.315 30.600 11.000 10.027 10.080 60.556 60.500 10.409 10.000 10.194 21.000 10.500 10.493 30.761 30.053 50.042 30.780 30.454 20.009 10.333 20.050 10.321 10.000 10.084 20.552 30.008 20.027 20.750 10.500 20.442 30.657 10.765 30.120 30.183 40.021 31.000 10.510 20.016 20.000 10.400 10.619 10.000 10.396 10.290 20.000 20.741 10.699 21.000 10.260 20.017 40.125 60.000 10.792 40.399 41.000 10.000 10.049 30.265 20.063 40.000 31.000 10.335 20.381 10.500 10.250 10.004 20.000 10.727 20.000 10.538 30.000 10.188 10.677 30.000 10.930 10.000 10.000 10.966 10.391 10.908 30.000 10.028 20.000 11.000 10.000 10.152 10.451 20.458 20.971 10.573 10.606 10.167 60.625 20.004 10.000 10.058 60.000 10.000 11.000 11.000 10.000 20.056 20.000 20.200 30.309 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
CSC-Pretrain Inst.permissive0.275 60.466 60.218 50.110 60.783 50.383 60.783 50.829 50.367 50.168 60.305 60.000 40.661 60.413 60.869 30.719 10.546 60.997 30.685 50.841 50.555 60.277 50.768 20.132 40.779 50.448 40.364 60.212 60.161 50.768 30.692 60.000 50.395 40.500 30.000 30.450 60.591 41.000 10.020 60.000 40.423 60.007 60.625 30.420 40.505 41.000 10.353 30.119 60.571 50.819 30.014 41.000 10.774 30.689 50.311 60.866 20.067 40.000 30.400 40.000 60.278 60.501 41.000 10.000 20.162 60.584 60.286 40.206 60.125 30.000 20.084 50.649 30.000 40.000 20.000 10.000 30.000 40.125 50.312 50.727 40.221 30.000 40.667 50.114 40.000 20.000 40.000 30.065 60.000 10.004 50.278 40.000 30.000 40.500 20.000 50.571 10.000 60.250 50.019 60.145 60.000 50.667 20.200 50.000 30.000 10.200 30.258 50.000 10.000 50.000 50.000 20.369 50.429 40.613 50.000 60.000 50.500 10.000 10.500 50.333 50.500 50.000 10.106 10.000 40.000 50.000 30.000 40.333 30.000 40.000 40.000 40.000 30.000 10.918 10.000 10.638 10.000 10.000 30.750 10.000 10.833 20.000 10.000 10.143 60.000 60.750 40.000 10.000 40.000 10.000 30.000 10.063 50.377 50.200 40.222 60.055 50.500 20.677 20.250 50.000 20.000 10.500 20.000 10.000 10.000 20.500 30.000 20.000 30.000 20.115 60.000 20.000 20.000 30.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.314 40.529 40.225 40.155 40.810 30.625 40.798 40.940 20.372 40.217 40.484 40.000 40.927 40.528 30.826 60.694 20.605 41.000 10.731 20.846 40.716 40.350 30.589 60.123 50.857 40.457 30.578 40.376 50.183 30.765 40.800 40.000 50.278 50.500 30.000 30.659 30.569 51.000 10.093 40.000 40.539 40.010 40.578 60.378 50.571 31.000 10.337 40.252 10.530 60.814 40.000 50.744 60.743 40.746 40.346 40.863 30.067 40.000 30.400 40.167 30.667 30.488 51.000 10.000 20.208 50.783 40.166 50.375 20.071 60.000 20.200 20.607 50.000 40.000 20.000 10.000 31.000 10.500 10.517 20.716 50.221 30.000 40.706 40.085 60.000 20.000 40.000 30.077 50.000 10.063 40.278 40.000 30.000 40.500 20.083 40.181 60.515 30.286 40.144 20.219 30.042 20.582 40.400 30.000 30.000 10.000 60.305 30.000 10.000 50.036 40.000 20.413 40.500 30.533 60.250 30.200 30.500 10.000 11.000 10.472 11.000 10.000 10.000 40.000 40.250 20.000 30.000 40.333 30.000 40.000 40.000 40.000 30.000 10.600 40.000 10.594 20.000 10.000 30.500 40.000 10.647 60.000 10.000 10.429 40.333 20.500 60.000 10.000 40.000 10.000 30.000 10.069 40.696 10.050 60.556 40.031 60.042 60.750 10.250 50.000 20.000 10.630 10.000 10.000 10.000 20.500 30.000 20.000 30.000 20.400 20.000 20.000 20.000 30.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.280 50.488 50.192 60.124 50.804 40.518 50.772 60.904 30.337 60.191 50.443 50.000 40.861 50.502 50.868 50.669 40.587 50.997 30.467 60.828 60.732 30.342 40.745 30.119 60.918 20.404 60.419 50.398 40.172 40.618 60.743 50.167 20.077 60.500 30.000 30.568 50.506 61.000 10.044 50.000 40.502 50.010 50.593 40.284 60.305 60.903 60.213 50.142 50.981 40.790 50.000 51.000 10.715 50.538 60.346 50.830 60.067 40.000 30.400 40.074 40.333 50.551 31.000 10.000 20.292 30.777 50.118 60.317 40.100 50.000 20.191 30.648 40.000 40.000 20.000 10.000 30.000 40.500 10.213 60.825 20.021 60.333 10.648 60.098 50.000 20.000 40.000 30.077 40.000 10.000 60.150 60.000 30.000 40.000 60.225 30.281 50.447 50.000 60.090 50.148 50.000 50.479 50.542 10.000 30.000 10.200 30.131 60.000 10.250 30.000 50.000 20.159 60.396 50.677 30.021 50.000 50.500 10.000 11.000 10.442 30.125 60.000 10.000 40.000 40.000 50.333 10.000 40.528 10.000 40.000 40.000 40.000 30.000 10.200 60.000 10.516 40.000 10.000 30.500 40.000 10.833 20.000 10.000 10.286 50.083 50.750 40.000 10.000 40.000 10.000 30.000 10.059 60.445 30.200 40.535 50.070 30.167 50.385 50.375 40.000 20.000 10.333 40.000 10.000 10.000 20.500 30.000 20.000 30.000 20.200 30.000 20.000 20.000 30.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
TD3D Scannet200permissive0.379 30.603 30.306 30.190 30.885 10.755 10.800 30.958 10.390 30.260 30.866 20.232 10.979 20.523 40.869 40.559 60.689 21.000 10.795 10.905 20.748 20.173 60.825 10.173 30.970 10.457 20.615 30.456 30.200 20.621 50.906 20.553 10.517 20.510 20.220 20.715 20.706 31.000 10.113 30.792 10.717 30.073 30.635 20.557 20.638 21.000 10.205 60.146 41.000 10.769 60.186 21.000 10.710 60.778 10.415 20.834 50.226 30.021 20.590 20.356 20.817 10.477 61.000 10.000 20.635 10.843 30.427 10.270 50.125 30.000 20.102 41.000 10.125 30.000 20.000 10.000 30.000 40.125 50.370 40.622 60.221 20.196 20.836 10.288 30.000 20.093 30.020 20.294 20.000 10.075 30.667 10.038 10.111 10.250 40.000 50.526 20.495 40.908 10.111 40.259 20.003 40.667 20.045 60.000 30.000 10.400 10.274 40.000 10.274 20.226 30.000 20.520 20.302 60.731 20.103 40.458 20.500 10.000 11.000 10.472 10.792 40.000 10.088 20.061 30.250 20.009 20.250 30.333 30.181 30.396 20.051 30.012 10.000 10.458 50.000 10.424 60.000 10.101 20.390 60.000 10.833 20.000 10.000 10.857 20.222 41.000 10.000 10.003 30.000 10.000 30.000 10.102 20.275 60.400 30.735 30.061 40.433 30.533 30.625 20.000 20.000 10.259 50.000 10.000 10.000 20.500 30.000 20.000 31.000 10.600 10.000 20.250 10.000 30.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PTv3 ScanNet0.794 30.941 30.813 210.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 360.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 300.833 290.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 350.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 390.685 170.714 40.979 10.594 100.310 300.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 230.818 160.836 260.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 510.805 190.708 100.916 390.898 50.801 4
TTT-KD0.773 70.646 970.818 160.809 410.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 190.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 310.751 260.854 180.540 250.903 110.630 390.672 170.963 160.565 260.357 100.788 50.900 140.737 310.802 200.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 260.849 130.786 50.846 300.566 120.876 190.690 130.674 160.960 190.576 220.226 730.753 270.904 110.777 160.815 90.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 310.709 50.643 270.958 230.587 160.295 380.753 270.884 230.758 230.815 90.725 50.927 270.867 270.743 19
OccuSeg+Semantic0.764 110.758 610.796 340.839 240.746 300.907 10.562 140.850 300.680 190.672 170.978 60.610 40.335 210.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 26
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 330.711 40.640 310.958 230.592 110.217 790.762 200.888 200.758 230.813 130.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 200.762 170.856 150.562 140.920 40.657 290.658 210.958 230.589 140.337 180.782 60.879 240.787 110.779 410.678 220.926 290.880 130.799 5
DTC0.757 150.843 290.820 120.847 160.791 20.862 110.511 380.870 220.707 60.652 230.954 400.604 80.279 490.760 210.942 30.734 320.766 500.701 130.884 610.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 60.776 90.837 390.548 200.896 150.649 310.675 150.962 170.586 170.335 210.771 140.802 540.770 190.787 380.691 170.936 200.880 130.761 13
ConDaFormer0.755 170.927 60.822 100.836 260.801 10.849 250.516 350.864 270.651 300.680 130.958 230.584 190.282 460.759 230.855 350.728 340.802 200.678 220.880 660.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
LSK3DNetpermissive0.755 170.899 160.823 80.843 200.764 160.838 380.584 20.845 340.717 20.638 330.956 300.580 210.229 720.640 490.900 140.750 260.813 130.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
PNE0.755 170.786 450.835 50.834 280.758 190.849 250.570 100.836 380.648 320.668 190.978 60.581 200.367 70.683 400.856 330.804 80.801 240.678 220.961 60.889 70.716 35
P. Hermosilla: Point Neighborhood Embeddings.
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 330.766 180.926 60.767 200.797 280.644 380.942 130.876 190.722 31
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 200.906 140.793 380.802 470.689 460.825 520.556 160.867 230.681 180.602 500.960 190.555 320.365 80.779 80.859 300.747 270.795 320.717 80.917 380.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointConvFormer0.749 220.793 430.790 390.807 430.750 280.856 150.524 310.881 180.588 580.642 300.977 100.591 120.274 520.781 70.929 50.804 80.796 290.642 390.947 100.885 100.715 36
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 220.909 120.818 160.811 390.752 240.839 370.485 530.842 350.673 210.644 260.957 280.528 420.305 320.773 120.859 300.788 100.818 80.693 160.916 390.856 350.723 30
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 240.623 1000.804 280.859 50.745 310.824 540.501 420.912 80.690 130.685 100.956 300.567 250.320 270.768 170.918 70.720 390.802 200.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 150.803 290.845 180.757 210.846 300.512 370.825 420.696 110.645 250.956 300.576 220.262 630.744 330.861 290.742 290.770 480.705 110.899 510.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 260.771 550.819 140.848 150.702 430.865 100.397 910.899 130.699 90.664 200.948 620.588 150.330 230.746 320.851 390.764 210.796 290.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 260.870 210.838 30.858 60.729 360.850 240.501 420.874 200.587 590.658 210.956 300.564 270.299 350.765 190.900 140.716 420.812 150.631 440.939 160.858 330.709 37
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 280.725 780.814 200.837 250.751 260.831 460.514 360.896 150.674 200.684 110.960 190.564 270.303 340.773 120.820 480.713 450.798 270.690 190.923 310.875 200.757 14
ODINpermissive0.744 290.658 930.752 640.870 30.714 400.843 330.569 110.919 50.703 80.622 400.949 590.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 390.725 28
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Retro-FPN0.744 290.842 300.800 300.767 610.740 320.836 410.541 230.914 70.672 220.626 370.958 230.552 330.272 540.777 90.886 220.696 520.801 240.674 290.941 140.858 330.717 33
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 310.620 1010.799 330.849 130.730 350.822 560.493 500.897 140.664 230.681 120.955 340.562 290.378 40.760 210.903 120.738 300.801 240.673 300.907 430.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 320.860 240.765 550.819 340.769 140.848 270.533 270.829 400.663 240.631 360.955 340.586 170.274 520.753 270.896 170.729 330.760 560.666 330.921 330.855 370.733 22
LRPNet0.742 320.816 380.806 270.807 430.752 240.828 500.575 80.839 370.699 90.637 340.954 400.520 460.320 270.755 260.834 430.760 220.772 450.676 260.915 410.862 300.717 33
LargeKernel3D0.739 340.909 120.820 120.806 450.740 320.852 220.545 210.826 410.594 570.643 270.955 340.541 350.263 620.723 380.858 320.775 180.767 490.678 220.933 230.848 430.694 42
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 350.776 510.790 390.851 110.754 230.854 180.491 520.866 250.596 560.686 90.955 340.536 370.342 160.624 560.869 260.787 110.802 200.628 450.927 270.875 200.704 39
MinkowskiNetpermissive0.736 350.859 250.818 160.832 300.709 410.840 350.521 330.853 290.660 260.643 270.951 510.544 340.286 440.731 360.893 180.675 610.772 450.683 210.874 730.852 410.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 370.890 170.837 40.864 40.726 370.873 50.530 300.824 430.489 930.647 240.978 60.609 50.336 190.624 560.733 640.758 230.776 430.570 710.949 90.877 160.728 24
online3d0.727 380.715 830.777 480.854 80.748 290.858 130.497 470.872 210.572 660.639 320.957 280.523 430.297 370.750 300.803 530.744 280.810 160.587 670.938 180.871 250.719 32
PointTransformer++0.725 390.727 760.811 240.819 340.765 150.841 340.502 410.814 480.621 420.623 390.955 340.556 310.284 450.620 580.866 270.781 140.757 600.648 360.932 250.862 300.709 37
SparseConvNet0.725 390.647 960.821 110.846 170.721 380.869 60.533 270.754 640.603 520.614 420.955 340.572 240.325 250.710 390.870 250.724 370.823 40.628 450.934 220.865 290.683 45
MatchingNet0.724 410.812 400.812 220.810 400.735 340.834 430.495 490.860 280.572 660.602 500.954 400.512 480.280 480.757 240.845 410.725 360.780 400.606 550.937 190.851 420.700 41
INS-Conv-semantic0.717 420.751 640.759 580.812 380.704 420.868 70.537 260.842 350.609 480.608 460.953 440.534 390.293 390.616 590.864 280.719 410.793 330.640 400.933 230.845 470.663 51
PointMetaBase0.714 430.835 310.785 430.821 320.684 480.846 300.531 290.865 260.614 430.596 540.953 440.500 510.246 680.674 410.888 200.692 530.764 520.624 470.849 880.844 480.675 47
contrastBoundarypermissive0.705 440.769 580.775 490.809 410.687 470.820 590.439 790.812 490.661 250.591 560.945 700.515 470.171 980.633 530.856 330.720 390.796 290.668 320.889 580.847 440.689 43
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 450.774 530.800 300.793 520.760 180.847 290.471 570.802 520.463 1000.634 350.968 140.491 540.271 560.726 370.910 90.706 470.815 90.551 830.878 670.833 490.570 83
RFCR0.702 460.889 180.745 700.813 370.672 510.818 630.493 500.815 470.623 400.610 440.947 640.470 630.249 670.594 630.848 400.705 480.779 410.646 370.892 560.823 550.611 66
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 470.825 350.796 340.723 680.716 390.832 450.433 810.816 450.634 370.609 450.969 120.418 890.344 140.559 750.833 440.715 430.808 180.560 770.902 480.847 440.680 46
JSENetpermissive0.699 480.881 200.762 560.821 320.667 520.800 760.522 320.792 550.613 440.607 470.935 900.492 530.205 850.576 680.853 370.691 550.758 580.652 350.872 760.828 520.649 55
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 490.743 670.794 360.655 910.684 480.822 560.497 470.719 740.622 410.617 410.977 100.447 760.339 170.750 300.664 810.703 500.790 360.596 600.946 120.855 370.647 56
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 500.732 720.772 500.786 530.677 500.866 90.517 340.848 310.509 860.626 370.952 490.536 370.225 750.545 810.704 710.689 580.810 160.564 760.903 470.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 510.884 190.754 620.795 500.647 590.818 630.422 830.802 520.612 450.604 480.945 700.462 660.189 930.563 740.853 370.726 350.765 510.632 430.904 450.821 580.606 70
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 520.704 850.741 740.754 650.656 540.829 480.501 420.741 690.609 480.548 640.950 550.522 450.371 50.633 530.756 590.715 430.771 470.623 480.861 840.814 610.658 52
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 530.866 220.748 670.819 340.645 610.794 790.450 690.802 520.587 590.604 480.945 700.464 650.201 880.554 770.840 420.723 380.732 710.602 580.907 430.822 570.603 73
VACNN++0.684 540.728 750.757 610.776 580.690 440.804 740.464 620.816 450.577 650.587 570.945 700.508 500.276 510.671 420.710 690.663 660.750 640.589 650.881 640.832 510.653 54
KP-FCNN0.684 540.847 280.758 600.784 550.647 590.814 660.473 560.772 580.605 500.594 550.935 900.450 740.181 960.587 640.805 520.690 560.785 390.614 510.882 630.819 590.632 62
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 540.712 840.784 440.782 570.658 530.835 420.499 460.823 440.641 340.597 530.950 550.487 560.281 470.575 690.619 850.647 740.764 520.620 500.871 790.846 460.688 44
PointContrast_LA_SEM0.683 570.757 620.784 440.786 530.639 630.824 540.408 860.775 570.604 510.541 660.934 940.532 400.269 580.552 780.777 570.645 770.793 330.640 400.913 420.824 540.671 48
Superpoint Network0.683 570.851 270.728 780.800 490.653 560.806 720.468 590.804 500.572 660.602 500.946 670.453 730.239 710.519 860.822 460.689 580.762 550.595 620.895 540.827 530.630 63
VI-PointConv0.676 590.770 570.754 620.783 560.621 670.814 660.552 180.758 620.571 690.557 620.954 400.529 410.268 600.530 840.682 750.675 610.719 740.603 570.888 590.833 490.665 50
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 600.789 440.748 670.763 630.635 650.814 660.407 880.747 660.581 630.573 590.950 550.484 570.271 560.607 600.754 600.649 710.774 440.596 600.883 620.823 550.606 70
SALANet0.670 610.816 380.770 530.768 600.652 570.807 710.451 660.747 660.659 280.545 650.924 1000.473 620.149 1080.571 710.811 510.635 810.746 650.623 480.892 560.794 750.570 83
O3DSeg0.668 620.822 360.771 520.496 1120.651 580.833 440.541 230.761 610.555 750.611 430.966 150.489 550.370 60.388 1050.580 880.776 170.751 620.570 710.956 70.817 600.646 57
PointConvpermissive0.666 630.781 480.759 580.699 760.644 620.822 560.475 550.779 560.564 720.504 830.953 440.428 830.203 870.586 660.754 600.661 670.753 610.588 660.902 480.813 630.642 58
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 630.703 860.781 460.751 670.655 550.830 470.471 570.769 590.474 960.537 680.951 510.475 610.279 490.635 510.698 740.675 610.751 620.553 820.816 950.806 650.703 40
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 650.746 650.708 810.722 690.638 640.820 590.451 660.566 1020.599 540.541 660.950 550.510 490.313 290.648 470.819 490.616 860.682 890.590 640.869 800.810 640.656 53
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 660.558 1080.751 650.655 910.690 440.722 1010.453 650.867 230.579 640.576 580.893 1120.523 430.293 390.733 350.571 900.692 530.659 960.606 550.875 700.804 670.668 49
DCM-Net0.658 660.778 490.702 840.806 450.619 680.813 690.468 590.693 820.494 890.524 740.941 820.449 750.298 360.510 880.821 470.675 610.727 730.568 740.826 930.803 680.637 60
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 680.698 880.743 720.650 930.564 850.820 590.505 400.758 620.631 380.479 870.945 700.480 590.226 730.572 700.774 580.690 560.735 690.614 510.853 870.776 900.597 76
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 690.752 630.734 760.664 890.583 800.815 650.399 900.754 640.639 350.535 700.942 800.470 630.309 310.665 430.539 920.650 700.708 790.635 420.857 860.793 770.642 58
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 700.778 490.731 770.699 760.577 810.829 480.446 710.736 700.477 950.523 760.945 700.454 700.269 580.484 950.749 630.618 840.738 670.599 590.827 920.792 800.621 65
PointConv-SFPN0.641 710.776 510.703 830.721 700.557 880.826 510.451 660.672 870.563 730.483 860.943 790.425 860.162 1030.644 480.726 650.659 680.709 780.572 700.875 700.786 850.559 89
MVPNetpermissive0.641 710.831 320.715 790.671 860.590 760.781 850.394 920.679 840.642 330.553 630.937 870.462 660.256 640.649 460.406 1050.626 820.691 860.666 330.877 680.792 800.608 69
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 730.717 820.701 850.692 790.576 820.801 750.467 610.716 750.563 730.459 930.953 440.429 820.169 1000.581 670.854 360.605 870.710 760.550 840.894 550.793 770.575 81
FPConvpermissive0.639 740.785 460.760 570.713 740.603 710.798 770.392 940.534 1070.603 520.524 740.948 620.457 680.250 660.538 820.723 670.598 910.696 840.614 510.872 760.799 700.567 86
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 750.797 420.769 540.641 980.590 760.820 590.461 630.537 1060.637 360.536 690.947 640.388 960.206 840.656 440.668 790.647 740.732 710.585 680.868 810.793 770.473 109
PointSPNet0.637 760.734 710.692 920.714 730.576 820.797 780.446 710.743 680.598 550.437 980.942 800.403 920.150 1070.626 550.800 550.649 710.697 830.557 800.846 890.777 890.563 87
SConv0.636 770.830 330.697 880.752 660.572 840.780 870.445 730.716 750.529 790.530 710.951 510.446 770.170 990.507 900.666 800.636 800.682 890.541 900.886 600.799 700.594 77
Supervoxel-CNN0.635 780.656 940.711 800.719 710.613 690.757 960.444 760.765 600.534 780.566 600.928 980.478 600.272 540.636 500.531 940.664 650.645 1000.508 980.864 830.792 800.611 66
joint point-basedpermissive0.634 790.614 1020.778 470.667 880.633 660.825 520.420 840.804 500.467 980.561 610.951 510.494 520.291 410.566 720.458 1000.579 970.764 520.559 790.838 900.814 610.598 75
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 800.731 730.688 950.675 830.591 750.784 840.444 760.565 1030.610 460.492 840.949 590.456 690.254 650.587 640.706 700.599 900.665 950.612 540.868 810.791 830.579 80
PointNet2-SFPN0.631 810.771 550.692 920.672 840.524 940.837 390.440 780.706 800.538 770.446 950.944 760.421 880.219 780.552 780.751 620.591 930.737 680.543 890.901 500.768 920.557 90
APCF-Net0.631 810.742 680.687 970.672 840.557 880.792 820.408 860.665 890.545 760.508 800.952 490.428 830.186 940.634 520.702 720.620 830.706 800.555 810.873 740.798 720.581 79
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 810.626 990.745 700.801 480.607 700.751 970.506 390.729 730.565 710.491 850.866 1150.434 780.197 910.595 620.630 840.709 460.705 810.560 770.875 700.740 1000.491 104
FusionAwareConv0.630 840.604 1040.741 740.766 620.590 760.747 980.501 420.734 710.503 880.527 720.919 1040.454 700.323 260.550 800.420 1040.678 600.688 870.544 870.896 530.795 740.627 64
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 850.800 410.625 1070.719 710.545 910.806 720.445 730.597 970.448 1030.519 780.938 860.481 580.328 240.489 940.499 990.657 690.759 570.592 630.881 640.797 730.634 61
SegGroup_sempermissive0.627 860.818 370.747 690.701 750.602 720.764 930.385 980.629 940.490 910.508 800.931 970.409 910.201 880.564 730.725 660.618 840.692 850.539 910.873 740.794 750.548 93
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 870.830 330.694 900.757 640.563 860.772 910.448 700.647 920.520 820.509 790.949 590.431 810.191 920.496 920.614 860.647 740.672 930.535 940.876 690.783 860.571 82
dtc_net0.625 870.703 860.751 650.794 510.535 920.848 270.480 540.676 860.528 800.469 900.944 760.454 700.004 1200.464 970.636 830.704 490.758 580.548 860.924 300.787 840.492 103
Weakly-Openseg v30.625 870.924 80.787 420.620 1000.555 900.811 700.393 930.666 880.382 1110.520 770.953 440.250 1150.208 820.604 610.670 770.644 780.742 660.538 920.919 360.803 680.513 101
HPEIN0.618 900.729 740.668 980.647 950.597 740.766 920.414 850.680 830.520 820.525 730.946 670.432 790.215 800.493 930.599 870.638 790.617 1050.570 710.897 520.806 650.605 72
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 910.858 260.772 500.489 1130.532 930.792 820.404 890.643 930.570 700.507 820.935 900.414 900.046 1170.510 880.702 720.602 890.705 810.549 850.859 850.773 910.534 96
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 920.760 600.667 990.649 940.521 950.793 800.457 640.648 910.528 800.434 1000.947 640.401 930.153 1060.454 980.721 680.648 730.717 750.536 930.904 450.765 930.485 105
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 930.634 980.743 720.697 780.601 730.781 850.437 800.585 1000.493 900.446 950.933 950.394 940.011 1190.654 450.661 820.603 880.733 700.526 950.832 910.761 950.480 106
LAP-D0.594 940.720 800.692 920.637 990.456 1040.773 900.391 960.730 720.587 590.445 970.940 840.381 970.288 420.434 1010.453 1020.591 930.649 980.581 690.777 990.749 990.610 68
DPC0.592 950.720 800.700 860.602 1040.480 1000.762 950.380 990.713 780.585 620.437 980.940 840.369 990.288 420.434 1010.509 980.590 950.639 1030.567 750.772 1000.755 970.592 78
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 960.766 590.659 1020.683 810.470 1030.740 1000.387 970.620 960.490 910.476 880.922 1020.355 1020.245 690.511 870.511 970.571 980.643 1010.493 1020.872 760.762 940.600 74
ROSMRF0.580 970.772 540.707 820.681 820.563 860.764 930.362 1010.515 1080.465 990.465 920.936 890.427 850.207 830.438 990.577 890.536 1010.675 920.486 1030.723 1060.779 870.524 98
SD-DETR0.576 980.746 650.609 1110.445 1170.517 960.643 1120.366 1000.714 770.456 1010.468 910.870 1140.432 790.264 610.558 760.674 760.586 960.688 870.482 1040.739 1040.733 1020.537 95
SQN_0.1%0.569 990.676 900.696 890.657 900.497 970.779 880.424 820.548 1040.515 840.376 1050.902 1110.422 870.357 100.379 1060.456 1010.596 920.659 960.544 870.685 1090.665 1130.556 91
TextureNetpermissive0.566 1000.672 920.664 1000.671 860.494 980.719 1020.445 730.678 850.411 1090.396 1030.935 900.356 1010.225 750.412 1030.535 930.565 990.636 1040.464 1060.794 980.680 1100.568 85
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 1010.648 950.700 860.770 590.586 790.687 1060.333 1050.650 900.514 850.475 890.906 1080.359 1000.223 770.340 1080.442 1030.422 1120.668 940.501 990.708 1070.779 870.534 96
Pointnet++ & Featurepermissive0.557 1020.735 700.661 1010.686 800.491 990.744 990.392 940.539 1050.451 1020.375 1060.946 670.376 980.205 850.403 1040.356 1080.553 1000.643 1010.497 1000.824 940.756 960.515 99
GMLPs0.538 1030.495 1130.693 910.647 950.471 1020.793 800.300 1080.477 1090.505 870.358 1070.903 1100.327 1050.081 1140.472 960.529 950.448 1100.710 760.509 960.746 1020.737 1010.554 92
PanopticFusion-label0.529 1040.491 1140.688 950.604 1030.386 1090.632 1130.225 1190.705 810.434 1060.293 1130.815 1170.348 1030.241 700.499 910.669 780.507 1030.649 980.442 1120.796 970.602 1170.561 88
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1050.676 900.591 1140.609 1010.442 1050.774 890.335 1040.597 970.422 1080.357 1080.932 960.341 1040.094 1130.298 1100.528 960.473 1080.676 910.495 1010.602 1150.721 1050.349 117
Online SegFusion0.515 1060.607 1030.644 1050.579 1060.434 1060.630 1140.353 1020.628 950.440 1040.410 1010.762 1200.307 1070.167 1010.520 850.403 1060.516 1020.565 1080.447 1100.678 1100.701 1070.514 100
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1070.558 1080.608 1120.424 1190.478 1010.690 1050.246 1150.586 990.468 970.450 940.911 1060.394 940.160 1040.438 990.212 1150.432 1110.541 1130.475 1050.742 1030.727 1030.477 107
PCNN0.498 1080.559 1070.644 1050.560 1080.420 1080.711 1040.229 1170.414 1100.436 1050.352 1090.941 820.324 1060.155 1050.238 1150.387 1070.493 1040.529 1140.509 960.813 960.751 980.504 102
3DMV0.484 1090.484 1150.538 1170.643 970.424 1070.606 1170.310 1060.574 1010.433 1070.378 1040.796 1180.301 1080.214 810.537 830.208 1160.472 1090.507 1170.413 1150.693 1080.602 1170.539 94
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1100.577 1060.611 1100.356 1210.321 1170.715 1030.299 1100.376 1140.328 1170.319 1110.944 760.285 1100.164 1020.216 1180.229 1130.484 1060.545 1120.456 1080.755 1010.709 1060.475 108
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1110.679 890.604 1130.578 1070.380 1100.682 1070.291 1110.106 1210.483 940.258 1190.920 1030.258 1140.025 1180.231 1170.325 1090.480 1070.560 1100.463 1070.725 1050.666 1120.231 121
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1120.474 1160.623 1080.463 1150.366 1120.651 1100.310 1060.389 1130.349 1150.330 1100.937 870.271 1120.126 1100.285 1110.224 1140.350 1170.577 1070.445 1110.625 1130.723 1040.394 113
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1130.548 1100.548 1160.597 1050.363 1130.628 1150.300 1080.292 1160.374 1120.307 1120.881 1130.268 1130.186 940.238 1150.204 1170.407 1130.506 1180.449 1090.667 1110.620 1160.462 111
SurfaceConvPF0.442 1130.505 1120.622 1090.380 1200.342 1150.654 1090.227 1180.397 1120.367 1130.276 1150.924 1000.240 1160.198 900.359 1070.262 1110.366 1140.581 1060.435 1130.640 1120.668 1110.398 112
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1150.437 1180.646 1040.474 1140.369 1110.645 1110.353 1020.258 1180.282 1200.279 1140.918 1050.298 1090.147 1090.283 1120.294 1100.487 1050.562 1090.427 1140.619 1140.633 1150.352 116
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1160.525 1110.647 1030.522 1090.324 1160.488 1210.077 1220.712 790.353 1140.401 1020.636 1220.281 1110.176 970.340 1080.565 910.175 1210.551 1110.398 1160.370 1220.602 1170.361 115
SPLAT Netcopyleft0.393 1170.472 1170.511 1180.606 1020.311 1180.656 1080.245 1160.405 1110.328 1170.197 1200.927 990.227 1180.000 1220.001 1230.249 1120.271 1200.510 1150.383 1180.593 1160.699 1080.267 119
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1180.297 1200.491 1190.432 1180.358 1140.612 1160.274 1130.116 1200.411 1090.265 1160.904 1090.229 1170.079 1150.250 1130.185 1180.320 1180.510 1150.385 1170.548 1170.597 1200.394 113
PointNet++permissive0.339 1190.584 1050.478 1200.458 1160.256 1200.360 1220.250 1140.247 1190.278 1210.261 1180.677 1210.183 1190.117 1110.212 1190.145 1200.364 1150.346 1220.232 1220.548 1170.523 1210.252 120
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1200.114 1220.589 1150.499 1110.147 1220.555 1180.290 1120.336 1150.290 1190.262 1170.865 1160.102 1220.000 1220.037 1210.000 1230.000 1230.462 1190.381 1190.389 1210.664 1140.473 109
SSC-UNetpermissive0.308 1210.353 1190.290 1220.278 1220.166 1210.553 1190.169 1210.286 1170.147 1220.148 1220.908 1070.182 1200.064 1160.023 1220.018 1220.354 1160.363 1200.345 1200.546 1190.685 1090.278 118
ScanNetpermissive0.306 1220.203 1210.366 1210.501 1100.311 1180.524 1200.211 1200.002 1230.342 1160.189 1210.786 1190.145 1210.102 1120.245 1140.152 1190.318 1190.348 1210.300 1210.460 1200.437 1220.182 122
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1230.000 1230.041 1230.172 1230.030 1230.062 1230.001 1230.035 1220.004 1230.051 1230.143 1230.019 1230.003 1210.041 1200.050 1210.003 1220.054 1230.018 1230.005 1230.264 1230.082 123


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.901 11.000 10.978 250.928 30.879 10.962 60.882 50.749 400.947 30.912 20.802 30.753 210.820 21.000 10.984 40.919 60.894 41.000 10.815 17
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
PointComp0.897 21.000 10.998 60.864 200.869 30.969 30.830 80.783 330.905 150.894 100.791 40.834 10.769 141.000 10.982 50.920 50.868 201.000 10.872 2
OneFormer3Dcopyleft0.896 31.000 11.000 10.913 60.858 70.951 120.786 170.837 200.916 130.908 40.778 90.803 70.750 161.000 10.976 70.926 40.882 80.995 500.849 3
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-MAFT0.896 31.000 11.000 10.872 170.847 120.967 40.955 10.778 350.901 170.919 10.784 60.812 20.770 131.000 10.949 100.865 370.868 191.000 10.840 6
MG-Former0.887 51.000 10.991 150.837 280.801 270.935 210.887 40.857 120.946 40.891 120.748 200.805 60.739 181.000 10.993 20.809 610.876 151.000 10.842 5
DCD0.885 61.000 10.933 430.856 240.832 160.959 80.930 20.858 110.802 400.859 200.767 100.796 110.709 221.000 10.971 80.871 310.904 21.000 10.874 1
UniPerception0.884 71.000 10.979 220.872 170.869 40.892 300.806 140.890 70.835 310.892 110.755 160.811 30.779 100.955 510.951 90.876 250.914 10.997 420.840 7
KmaxOneFormerNetpermissive0.883 81.000 11.000 10.798 430.848 110.971 10.853 70.903 30.827 340.910 30.748 190.809 50.724 201.000 10.980 60.855 430.844 261.000 10.832 8
InsSSM0.883 81.000 10.996 70.800 420.865 50.960 70.808 130.852 170.940 70.899 90.785 50.810 40.700 241.000 10.912 220.851 460.895 30.997 420.827 10
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Competitor-SPFormer0.881 101.000 11.000 10.845 260.854 80.962 50.714 250.857 130.904 160.902 70.782 80.789 140.662 301.000 10.988 30.874 280.886 70.997 420.847 4
VDG-Uni3DSeg0.880 111.000 10.990 170.889 100.823 200.952 110.764 190.893 60.941 60.907 50.756 150.781 160.628 481.000 10.918 210.903 90.872 180.999 400.821 14
TST3D0.879 121.000 10.994 100.921 50.807 260.939 180.771 180.887 80.923 110.862 190.722 250.768 180.756 151.000 10.910 330.904 80.836 290.999 400.824 12
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
SIM3D0.878 131.000 10.972 270.863 210.817 240.952 100.821 110.783 310.890 200.902 80.735 230.797 90.799 91.000 10.931 180.893 150.853 241.000 10.792 20
EV3D0.877 141.000 10.996 90.873 150.854 90.950 130.691 290.783 320.926 80.889 150.754 170.794 130.820 21.000 10.912 220.900 110.860 221.000 10.779 23
TD3Dpermissive0.875 151.000 10.976 260.877 130.783 330.970 20.889 30.828 210.945 50.803 260.713 270.720 280.709 211.000 10.936 160.934 30.873 161.000 10.791 21
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Spherical Mask(CtoF)0.875 151.000 10.991 160.873 150.850 100.946 150.691 290.752 390.926 80.889 140.759 130.794 120.820 21.000 10.912 220.900 110.878 121.000 10.769 25
SoftGroup++0.874 171.000 10.972 280.947 10.839 150.898 290.556 440.913 20.881 230.756 280.828 20.748 230.821 11.000 10.937 150.937 10.887 61.000 10.821 13
Queryformer0.874 171.000 10.978 240.809 400.876 20.936 200.702 260.716 450.920 120.875 180.766 110.772 170.818 61.000 10.995 10.916 70.892 51.000 10.767 26
Mask3D0.870 191.000 10.985 190.782 500.818 230.938 190.760 200.749 400.923 100.877 170.760 120.785 150.820 21.000 10.912 220.864 390.878 120.983 560.825 11
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ExtMask3D0.867 201.000 11.000 10.756 570.816 250.940 170.795 150.760 380.862 250.888 160.739 210.763 190.774 111.000 10.929 190.878 240.879 101.000 10.819 16
SoftGrouppermissive0.865 211.000 10.969 290.860 220.860 60.913 250.558 410.899 40.911 140.760 270.828 10.736 250.802 80.981 480.919 200.875 260.877 141.000 10.820 15
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
MAFT0.860 221.000 10.990 170.810 390.829 170.949 140.809 120.688 510.836 300.904 60.751 180.796 100.741 171.000 10.864 430.848 480.837 271.000 10.828 9
IPCA-Inst0.851 231.000 10.968 300.884 120.842 140.862 430.693 280.812 260.888 220.677 400.783 70.698 290.807 71.000 10.911 300.865 380.865 211.000 10.757 29
SPFormerpermissive0.851 231.000 10.994 110.806 410.774 350.942 160.637 330.849 180.859 270.889 130.720 260.730 260.665 291.000 10.911 300.868 360.873 171.000 10.796 19
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
ODIN - Inspermissive0.847 251.000 10.951 360.834 330.828 180.875 350.871 60.767 360.821 360.816 230.690 340.800 80.771 121.000 10.912 220.891 160.821 300.886 720.713 36
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Mask3D_evaluation0.843 261.000 10.955 350.847 250.795 290.932 220.750 220.780 340.891 190.818 220.737 220.633 380.703 231.000 10.902 350.870 320.820 310.941 640.805 18
SphereSeg0.835 271.000 10.963 330.891 90.794 300.954 90.822 100.710 460.961 20.721 320.693 330.530 510.653 321.000 10.867 420.857 420.859 230.991 530.771 24
ISBNetpermissive0.835 271.000 10.950 370.731 590.819 210.918 230.790 160.740 420.851 290.831 210.661 360.742 240.650 331.000 10.937 140.814 600.836 281.000 10.765 27
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TopoSeg0.832 291.000 10.981 210.933 20.819 220.826 520.524 500.841 190.811 370.681 390.759 140.687 300.727 190.981 480.911 300.883 200.853 251.000 10.756 30
GraphCut0.832 291.000 10.922 520.724 610.798 280.902 280.701 270.856 150.859 260.715 330.706 280.748 220.640 441.000 10.934 170.862 400.880 91.000 10.729 32
PBNetpermissive0.825 311.000 10.963 320.837 300.843 130.865 380.822 90.647 540.878 240.733 300.639 430.683 310.650 331.000 10.853 440.870 330.820 321.000 10.744 31
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
SSEC0.820 321.000 10.983 200.924 40.826 190.817 550.415 590.899 50.793 420.673 410.731 240.636 360.653 311.000 10.939 130.804 630.878 111.000 10.780 22
DKNet0.815 331.000 10.930 440.844 270.765 390.915 240.534 480.805 280.805 390.807 250.654 370.763 200.650 331.000 10.794 560.881 210.766 361.000 10.758 28
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
RPGN0.806 341.000 10.992 130.789 450.723 520.891 310.650 320.810 270.832 320.665 430.699 310.658 320.700 241.000 10.881 370.832 520.774 340.997 420.613 53
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Box2Mask0.803 351.000 10.962 340.874 140.707 560.887 340.686 310.598 590.961 10.715 340.694 320.469 560.700 241.000 10.912 220.902 100.753 410.997 420.637 47
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
HAISpermissive0.803 351.000 10.994 110.820 350.759 400.855 440.554 450.882 90.827 350.615 490.676 350.638 350.646 421.000 10.912 220.797 660.767 350.994 510.726 33
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
Mask-Group0.792 371.000 10.968 310.812 360.766 380.864 390.460 530.815 250.888 210.598 530.651 400.639 340.600 510.918 540.941 110.896 140.721 481.000 10.723 34
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 381.000 10.996 70.829 340.767 370.889 330.600 360.819 240.770 470.594 540.620 470.541 480.700 241.000 10.941 110.889 180.763 371.000 10.526 63
SSTNetpermissive0.789 391.000 10.840 660.888 110.717 530.835 480.717 240.684 520.627 620.724 310.652 390.727 270.600 511.000 10.912 220.822 550.757 401.000 10.691 41
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
GICN0.788 401.000 10.978 230.867 190.781 340.833 490.527 490.824 220.806 380.549 620.596 500.551 440.700 241.000 10.853 440.935 20.733 451.000 10.651 44
DENet0.786 411.000 10.929 450.736 580.750 460.720 680.755 210.934 10.794 410.590 550.561 560.537 490.650 331.000 10.882 360.804 640.789 331.000 10.719 35
DANCENET0.786 411.000 10.936 400.783 480.737 490.852 460.742 230.647 540.765 490.811 240.624 460.579 410.632 471.000 10.909 340.898 130.696 530.944 600.601 56
DualGroup0.782 431.000 10.927 460.811 370.772 360.853 450.631 350.805 280.773 440.613 500.611 480.610 390.650 330.835 650.881 370.879 230.750 431.000 10.675 42
PointGroup0.778 441.000 10.900 560.798 440.715 540.863 400.493 510.706 470.895 180.569 600.701 290.576 420.639 451.000 10.880 390.851 450.719 490.997 420.709 38
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 451.000 10.900 570.860 220.728 510.869 360.400 600.857 140.774 430.568 610.701 300.602 400.646 420.933 530.843 470.890 170.691 570.997 420.709 37
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
AOIA0.767 461.000 10.937 390.810 380.740 480.906 260.550 460.800 300.706 540.577 590.624 450.544 470.596 560.857 570.879 410.880 220.750 420.992 520.658 43
DD-UNet+Group0.764 471.000 10.897 590.837 290.753 430.830 510.459 550.824 220.699 560.629 470.653 380.438 590.650 331.000 10.880 390.858 410.690 581.000 10.650 45
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.762 481.000 10.923 490.765 530.785 320.905 270.600 360.655 530.646 610.683 380.647 410.530 500.650 331.000 10.824 490.830 530.693 560.944 600.644 46
Dyco3Dcopyleft0.761 491.000 10.935 410.893 80.752 450.863 410.600 360.588 600.742 510.641 450.633 440.546 460.550 580.857 570.789 580.853 440.762 380.987 540.699 39
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OccuSeg+instance0.742 501.000 10.923 490.785 460.745 470.867 370.557 420.578 630.729 520.670 420.644 420.488 540.577 571.000 10.794 560.830 530.620 661.000 10.550 59
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RWSeg0.739 511.000 10.899 580.759 550.753 440.823 530.282 650.691 500.658 590.582 580.594 510.547 450.628 481.000 10.795 550.868 350.728 471.000 10.692 40
3D-MPA0.737 521.000 10.933 420.785 460.794 310.831 500.279 670.588 600.695 570.616 480.559 570.556 430.650 331.000 10.809 530.875 270.696 541.000 10.608 55
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
MTML0.731 531.000 10.992 130.779 520.609 650.746 630.308 640.867 100.601 650.607 510.539 600.519 520.550 581.000 10.824 490.869 340.729 461.000 10.616 51
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
OSIS0.725 541.000 10.885 620.653 670.657 620.801 560.576 400.695 490.828 330.698 360.534 610.457 580.500 650.857 570.831 480.841 500.627 641.000 10.619 50
SSEN0.724 551.000 10.926 470.781 510.661 600.845 470.596 390.529 660.764 500.653 440.489 670.461 570.500 650.859 560.765 590.872 300.761 391.000 10.577 57
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.718 561.000 10.945 380.901 70.754 420.817 540.460 530.700 480.772 450.688 370.568 550.000 780.500 650.981 480.606 690.872 290.740 441.000 10.614 52
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Sparse R-CNN0.714 571.000 10.926 480.694 620.699 580.890 320.636 340.516 670.693 580.743 290.588 520.369 630.601 500.594 710.800 540.886 190.676 590.986 550.546 60
SALoss-ResNet0.695 581.000 10.855 640.579 720.589 670.735 660.484 520.588 600.856 280.634 460.571 540.298 640.500 651.000 10.824 490.818 560.702 520.935 670.545 61
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
PanopticFusion-inst0.693 591.000 10.852 650.655 660.616 640.788 580.334 620.763 370.771 460.457 720.555 580.652 330.518 620.857 570.765 590.732 720.631 620.944 600.577 58
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Occipital-SCS0.688 601.000 10.913 530.730 600.737 500.743 650.442 560.855 160.655 600.546 630.546 590.263 660.508 640.889 550.568 700.771 690.705 510.889 700.625 49
3D-BoNet0.687 611.000 10.887 610.836 310.587 680.643 750.550 460.620 560.724 530.522 670.501 650.243 670.512 631.000 10.751 610.807 620.661 610.909 690.612 54
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
ClickSeg_Instance0.685 621.000 10.818 680.600 700.715 550.795 570.557 420.533 650.591 670.601 520.519 630.429 610.638 460.938 520.706 640.817 580.624 650.944 600.502 65
PCJC0.684 631.000 10.895 600.757 560.659 610.862 420.189 740.739 430.606 640.712 350.581 530.515 530.650 330.857 570.357 750.785 670.631 630.889 700.635 48
SPG_WSIS0.678 641.000 10.880 630.836 310.701 570.727 670.273 690.607 580.706 550.541 650.515 640.174 700.600 510.857 570.716 630.846 490.711 501.000 10.506 64
One_Thing_One_Clickpermissive0.675 651.000 10.823 670.782 490.621 630.766 600.211 710.736 440.560 690.586 560.522 620.636 370.453 690.641 690.853 440.850 470.694 550.997 420.411 70
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
SegGroup_inspermissive0.637 661.000 10.923 510.593 710.561 690.746 640.143 760.504 680.766 480.485 700.442 680.372 620.530 610.714 660.815 520.775 680.673 601.000 10.431 69
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MASCpermissive0.615 670.711 740.802 690.540 730.757 410.777 590.029 770.577 640.588 680.521 680.600 490.436 600.534 600.697 670.616 680.838 510.526 680.980 570.534 62
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
UNet-backbone0.605 681.000 10.909 540.764 540.603 660.704 690.415 580.301 730.548 700.461 710.394 690.267 650.386 710.857 570.649 670.817 570.504 700.959 580.356 73
3D-SISpermissive0.558 691.000 10.773 700.614 690.503 720.691 710.200 720.412 690.498 730.546 640.311 740.103 740.600 510.857 570.382 720.799 650.445 760.938 660.371 71
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.544 700.500 770.655 760.661 650.663 590.765 610.432 570.214 760.612 630.584 570.499 660.204 690.286 750.429 740.655 660.650 770.539 670.950 590.499 66
Hier3Dcopyleft0.540 711.000 10.727 710.626 680.467 750.693 700.200 720.412 690.480 740.528 660.318 730.077 770.600 510.688 680.382 720.768 700.472 720.941 640.350 74
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
Region-18class0.497 720.250 790.902 550.689 630.540 700.747 620.276 680.610 570.268 780.489 690.348 700.000 780.243 780.220 770.663 650.814 590.459 740.928 680.496 67
Sem_Recon_ins0.484 730.764 730.608 780.470 750.521 710.637 760.311 630.218 750.348 770.365 760.223 750.222 680.258 760.629 700.734 620.596 780.509 690.858 740.444 68
tmp0.474 741.000 10.727 710.433 770.481 740.673 730.022 790.380 710.517 720.436 740.338 720.128 720.343 730.429 740.291 770.728 730.473 710.833 750.300 76
SemRegionNet-20cls0.470 751.000 10.727 710.447 760.481 730.678 720.024 780.380 710.518 710.440 730.339 710.128 720.350 720.429 740.212 780.711 740.465 730.833 750.290 77
ASIS0.422 760.333 780.707 740.676 640.401 760.650 740.350 610.177 770.594 660.376 750.202 760.077 760.404 700.571 720.197 790.674 760.447 750.500 780.260 78
3D-BEVIS0.401 770.667 750.687 750.419 780.137 790.587 770.188 750.235 740.359 760.211 780.093 790.080 750.311 740.571 720.382 720.754 710.300 780.874 730.357 72
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sgpn_scannet0.390 780.556 760.636 770.493 740.353 770.539 780.271 700.160 780.450 750.359 770.178 770.146 710.250 770.143 780.347 760.698 750.436 770.667 770.331 75
MaskRCNN 2d->3d Proj0.261 790.903 720.081 790.008 790.233 780.175 790.280 660.106 790.150 790.203 790.175 780.480 550.218 790.143 780.542 710.404 790.153 790.393 790.049 79


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 190.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 150.769 50.656 30.567 40.931 30.395 60.390 60.700 40.534 40.689 110.770 20.574 30.865 110.831 30.675 6
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 160.794 40.434 170.688 10.337 80.464 140.798 40.632 50.589 30.908 90.420 20.329 140.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 250.648 40.463 30.549 20.742 90.676 20.628 20.961 10.420 20.379 70.684 80.381 200.732 30.723 30.599 20.827 180.851 20.634 9
DVEFormer0.626 50.616 120.764 60.690 50.583 110.322 140.540 30.809 30.593 70.502 120.900 140.374 90.433 30.660 90.528 50.665 190.663 60.491 90.871 100.810 90.705 4
CMX0.613 60.681 90.725 130.502 130.634 60.297 190.478 120.830 20.651 40.537 70.924 40.375 70.315 160.686 70.451 150.714 50.543 230.504 60.894 70.823 50.688 5
DMMF_3d0.605 70.651 100.744 110.782 30.637 50.387 40.536 50.732 100.590 80.540 60.856 230.359 120.306 170.596 160.539 30.627 220.706 40.497 80.785 230.757 210.476 24
EMSANet0.600 80.716 40.746 100.395 200.614 90.382 50.523 60.713 130.571 120.503 100.922 70.404 50.397 50.655 100.400 170.626 230.663 60.469 140.900 40.827 40.577 16
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 90.533 220.756 90.746 40.590 100.334 100.506 90.670 170.587 90.500 130.905 110.366 110.352 100.601 150.506 90.669 170.648 100.501 70.839 170.769 170.516 23
RFBNet0.592 100.616 120.758 80.659 60.581 120.330 110.469 130.655 200.543 150.524 80.924 40.355 140.336 120.572 190.479 110.671 150.648 100.480 110.814 210.814 70.614 12
FAN_NV_RVC0.586 110.510 230.764 60.079 280.620 80.330 110.494 100.753 70.573 100.556 50.884 180.405 40.303 180.718 30.452 140.672 140.658 80.509 50.898 50.813 80.727 2
WSGFormer0.585 120.706 50.708 180.434 170.574 140.283 220.538 40.759 60.542 170.482 170.924 40.351 160.333 130.614 120.393 180.692 100.551 220.461 150.874 90.809 100.673 7
DCRedNet0.583 130.682 80.723 140.542 120.510 220.310 160.451 150.668 180.549 140.520 90.920 80.375 70.446 20.528 220.417 160.670 160.577 190.478 120.862 120.806 110.628 11
MIX6D_RVC0.582 140.695 60.687 190.225 230.632 70.328 130.550 10.748 80.623 60.494 160.890 160.350 170.254 250.688 60.454 130.716 40.597 180.489 100.881 80.768 180.575 17
SSMAcopyleft0.577 150.695 60.716 160.439 150.563 160.314 150.444 170.719 110.551 130.503 100.887 170.346 180.348 110.603 140.353 220.709 60.600 160.457 160.901 30.786 130.599 15
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 160.623 110.767 50.238 220.571 150.347 60.413 210.719 110.472 220.418 240.895 150.357 130.260 240.696 50.523 80.666 180.642 120.437 200.895 60.793 120.603 14
UNIV_CNP_RVC_UE0.566 170.569 210.686 210.435 160.524 190.294 200.421 200.712 140.543 150.463 190.872 190.320 190.363 90.611 130.477 120.686 120.627 130.443 190.862 120.775 160.639 8
EMSAFormer0.564 180.581 180.736 120.564 110.546 180.219 250.517 70.675 160.486 210.427 230.904 120.352 150.320 150.589 170.528 50.708 70.464 260.413 240.847 160.786 130.611 13
SN_RN152pyrx8_RVCcopyleft0.546 190.572 190.663 230.638 80.518 200.298 180.366 260.633 230.510 190.446 210.864 210.296 220.267 210.542 210.346 230.704 80.575 200.431 210.853 150.766 190.630 10
UDSSEG_RVC0.545 200.610 150.661 240.588 90.556 170.268 230.482 110.642 220.572 110.475 180.836 250.312 200.367 80.630 110.189 250.639 210.495 250.452 170.826 190.756 220.541 19
segfomer with 6d0.542 210.594 170.687 190.146 260.579 130.308 170.515 80.703 150.472 220.498 140.868 200.369 100.282 190.589 170.390 190.701 90.556 210.416 230.860 140.759 200.539 21
FuseNetpermissive0.535 220.570 200.681 220.182 240.512 210.290 210.431 180.659 190.504 200.495 150.903 130.308 210.428 40.523 230.365 210.676 130.621 150.470 130.762 240.779 150.541 19
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 230.613 140.722 150.418 190.358 280.337 80.370 250.479 260.443 240.368 260.907 100.207 250.213 270.464 260.525 70.618 240.657 90.450 180.788 220.721 250.408 27
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 240.481 260.612 250.579 100.456 240.343 70.384 230.623 240.525 180.381 250.845 240.254 240.264 230.557 200.182 260.581 260.598 170.429 220.760 250.661 270.446 26
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 250.505 240.709 170.092 270.427 250.241 240.411 220.654 210.385 280.457 200.861 220.053 280.279 200.503 240.481 100.645 200.626 140.365 260.748 260.725 240.529 22
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 260.490 250.581 260.289 210.507 230.067 280.379 240.610 250.417 260.435 220.822 270.278 230.267 210.503 240.228 240.616 250.533 240.375 250.820 200.729 230.560 18
Enet (reimpl)0.376 270.264 280.452 280.452 140.365 260.181 260.143 280.456 270.409 270.346 270.769 280.164 260.218 260.359 270.123 280.403 280.381 280.313 280.571 270.685 260.472 25
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 280.293 270.521 270.657 70.361 270.161 270.250 270.004 280.440 250.183 280.836 250.125 270.060 280.319 280.132 270.417 270.412 270.344 270.541 280.427 280.109 28
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3