The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 230.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
PTv3 ScanNet0.794 30.941 30.813 220.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 370.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.797 20.727 770.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 400.685 170.714 40.979 10.594 100.310 310.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 29
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
PonderV20.785 40.978 10.800 310.833 300.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 360.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
IPCA0.731 370.890 180.837 40.864 40.726 370.873 50.530 310.824 440.489 940.647 250.978 60.609 50.336 200.624 570.733 640.758 230.776 440.570 720.949 90.877 170.728 25
OccuSeg+Semantic0.764 110.758 620.796 350.839 240.746 300.907 10.562 140.850 310.680 190.672 180.978 60.610 40.335 220.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 27
TTT-KD0.773 70.646 980.818 170.809 420.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 200.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
PNE0.755 170.786 460.835 50.834 290.758 190.849 250.570 100.836 390.648 320.668 200.978 60.581 200.367 70.683 400.856 330.804 80.801 250.678 220.961 60.889 70.716 36
P. Hermosilla: Point Neighborhood Embeddings.
PointConvFormer0.749 220.793 440.790 400.807 440.750 280.856 150.524 320.881 180.588 590.642 310.977 100.591 120.274 530.781 70.929 50.804 80.796 300.642 400.947 100.885 100.715 37
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
One-Thing-One-Click0.693 500.743 680.794 370.655 920.684 490.822 570.497 480.719 750.622 410.617 420.977 100.447 770.339 180.750 300.664 810.703 510.790 370.596 610.946 120.855 380.647 57
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
One Thing One Click0.701 480.825 360.796 350.723 690.716 390.832 460.433 820.816 460.634 370.609 460.969 120.418 900.344 140.559 760.833 440.715 430.808 190.560 780.902 480.847 450.680 47
Swin3Dpermissive0.779 60.861 240.818 170.836 270.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 520.805 200.708 100.916 390.898 50.801 4
ClickSeg_Semantic0.703 460.774 540.800 310.793 530.760 180.847 290.471 580.802 530.463 1010.634 360.968 140.491 550.271 570.726 370.910 90.706 480.815 90.551 840.878 680.833 500.570 84
O3DSeg0.668 630.822 370.771 530.496 1130.651 590.833 450.541 230.761 620.555 760.611 440.966 150.489 560.370 60.388 1060.580 890.776 170.751 630.570 720.956 70.817 610.646 58
PPT-SpUNet-Joint0.766 90.932 50.794 370.829 320.751 260.854 180.540 250.903 110.630 390.672 180.963 160.565 260.357 100.788 50.900 140.737 310.802 210.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OA-CNN-L_ScanNet200.756 160.783 480.826 60.858 60.776 90.837 400.548 200.896 150.649 310.675 160.962 170.586 170.335 220.771 140.802 540.770 190.787 390.691 170.936 200.880 130.761 14
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
DMF-Net0.752 200.906 150.793 390.802 480.689 470.825 530.556 160.867 240.681 180.602 510.960 190.555 320.365 80.779 80.859 300.747 270.795 330.717 80.917 380.856 360.764 13
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 200.742 690.809 260.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 340.766 180.926 60.767 200.797 290.644 390.942 130.876 200.722 32
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DiffSeg3D20.745 280.725 790.814 210.837 250.751 260.831 470.514 370.896 150.674 200.684 110.960 190.564 270.303 350.773 120.820 480.713 450.798 280.690 190.923 310.875 210.757 15
OctFormerpermissive0.766 90.925 70.808 270.849 130.786 50.846 300.566 120.876 190.690 130.674 170.960 190.576 220.226 740.753 270.904 110.777 160.815 90.722 70.923 310.877 170.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
MS-SFA-net0.730 380.910 120.819 140.837 250.698 440.838 380.532 290.872 210.605 500.676 150.959 230.535 390.341 170.649 460.598 880.708 470.810 160.664 350.895 540.879 160.771 12
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 340.711 40.640 320.958 240.592 110.217 800.762 200.888 200.758 230.813 130.726 40.932 250.868 270.744 19
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
Retro-FPN0.744 290.842 310.800 310.767 620.740 320.836 420.541 230.914 70.672 220.626 380.958 240.552 330.272 550.777 90.886 220.696 530.801 250.674 290.941 140.858 340.717 34
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
ConDaFormer0.755 170.927 60.822 100.836 270.801 10.849 250.516 360.864 280.651 300.680 130.958 240.584 190.282 470.759 230.855 350.728 340.802 210.678 220.880 670.873 240.756 17
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 320.709 50.643 280.958 240.587 160.295 390.753 270.884 230.758 230.815 90.725 50.927 270.867 280.743 20
DiffSegNet0.758 140.725 790.789 420.843 200.762 170.856 150.562 140.920 40.657 290.658 220.958 240.589 140.337 190.782 60.879 240.787 110.779 420.678 220.926 290.880 130.799 5
online3d0.727 390.715 840.777 490.854 80.748 290.858 130.497 480.872 210.572 670.639 330.957 290.523 440.297 380.750 300.803 530.744 280.810 160.587 680.938 180.871 260.719 33
BPNetcopyleft0.749 220.909 130.818 170.811 400.752 240.839 370.485 540.842 360.673 210.644 270.957 290.528 430.305 330.773 120.859 300.788 100.818 80.693 160.916 390.856 360.723 31
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
LSK3DNetpermissive0.755 170.899 170.823 80.843 200.764 160.838 380.584 20.845 350.717 20.638 340.956 310.580 210.229 730.640 500.900 140.750 260.813 130.729 30.920 350.872 250.757 15
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
VMNetpermissive0.746 260.870 220.838 30.858 60.729 360.850 240.501 430.874 200.587 600.658 220.956 310.564 270.299 360.765 190.900 140.716 420.812 150.631 450.939 160.858 340.709 38
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
MSP0.748 240.623 1010.804 290.859 50.745 310.824 550.501 430.912 80.690 130.685 100.956 310.567 250.320 280.768 170.918 70.720 390.802 210.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 160.803 300.845 180.757 210.846 300.512 380.825 430.696 110.645 260.956 310.576 220.262 640.744 330.861 290.742 290.770 490.705 110.899 510.860 330.734 22
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
SAT0.742 320.860 250.765 560.819 350.769 140.848 270.533 270.829 410.663 240.631 370.955 350.586 170.274 530.753 270.896 170.729 330.760 570.666 330.921 330.855 380.733 23
PointTransformer++0.725 400.727 770.811 250.819 350.765 150.841 340.502 420.814 490.621 420.623 400.955 350.556 310.284 460.620 590.866 270.781 140.757 610.648 370.932 250.862 310.709 38
EQ-Net0.743 310.620 1020.799 340.849 130.730 350.822 570.493 510.897 140.664 230.681 120.955 350.562 290.378 40.760 210.903 120.738 300.801 250.673 300.907 430.877 170.745 18
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
RPN0.736 350.776 520.790 400.851 110.754 230.854 180.491 530.866 260.596 570.686 90.955 350.536 370.342 160.624 570.869 260.787 110.802 210.628 460.927 270.875 210.704 40
SparseConvNet0.725 400.647 970.821 110.846 170.721 380.869 60.533 270.754 650.603 530.614 430.955 350.572 240.325 260.710 390.870 250.724 370.823 40.628 460.934 220.865 300.683 46
LargeKernel3D0.739 340.909 130.820 120.806 460.740 320.852 220.545 210.826 420.594 580.643 280.955 350.541 350.263 630.723 380.858 320.775 180.767 500.678 220.933 230.848 440.694 43
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
MatchingNet0.724 420.812 410.812 230.810 410.735 340.834 440.495 500.860 290.572 670.602 510.954 410.512 490.280 490.757 240.845 410.725 360.780 410.606 560.937 190.851 430.700 42
VI-PointConv0.676 600.770 580.754 630.783 570.621 680.814 670.552 180.758 630.571 700.557 630.954 410.529 420.268 610.530 850.682 750.675 620.719 750.603 580.888 600.833 500.665 51
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
LRPNet0.742 320.816 390.806 280.807 440.752 240.828 510.575 80.839 380.699 90.637 350.954 410.520 470.320 280.755 260.834 430.760 220.772 460.676 260.915 410.862 310.717 34
DTC0.757 150.843 300.820 120.847 160.791 20.862 110.511 390.870 230.707 60.652 240.954 410.604 80.279 500.760 210.942 30.734 320.766 510.701 130.884 620.874 230.736 21
PointMetaBase0.714 440.835 320.785 440.821 330.684 490.846 300.531 300.865 270.614 430.596 550.953 450.500 520.246 690.674 410.888 200.692 540.764 530.624 480.849 890.844 490.675 48
PointConvpermissive0.666 640.781 490.759 590.699 770.644 630.822 570.475 560.779 570.564 730.504 840.953 450.428 840.203 880.586 670.754 600.661 680.753 620.588 670.902 480.813 640.642 59
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointMRNet0.640 740.717 830.701 860.692 800.576 830.801 760.467 620.716 760.563 740.459 940.953 450.429 830.169 1010.581 680.854 360.605 880.710 770.550 850.894 560.793 780.575 82
Weakly-Openseg v30.625 880.924 80.787 430.620 1010.555 910.811 710.393 940.666 890.382 1120.520 780.953 450.250 1160.208 830.604 620.670 770.644 790.742 670.538 930.919 360.803 690.513 102
INS-Conv-semantic0.717 430.751 650.759 590.812 390.704 420.868 70.537 260.842 360.609 480.608 470.953 450.534 400.293 400.616 600.864 280.719 410.793 340.640 410.933 230.845 480.663 52
PicassoNet-IIpermissive0.692 510.732 730.772 510.786 540.677 510.866 90.517 350.848 320.509 870.626 380.952 500.536 370.225 760.545 820.704 710.689 590.810 160.564 770.903 470.854 400.729 24
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
APCF-Net0.631 820.742 690.687 980.672 850.557 890.792 830.408 870.665 900.545 770.508 810.952 500.428 840.186 950.634 530.702 720.620 840.706 810.555 820.873 750.798 730.581 80
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
SConv0.636 780.830 340.697 890.752 670.572 850.780 880.445 740.716 760.529 800.530 720.951 520.446 780.170 1000.507 910.666 800.636 810.682 900.541 910.886 610.799 710.594 78
PointASNLpermissive0.666 640.703 870.781 470.751 680.655 560.830 480.471 580.769 600.474 970.537 690.951 520.475 620.279 500.635 520.698 740.675 620.751 630.553 830.816 960.806 660.703 41
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
joint point-basedpermissive0.634 800.614 1030.778 480.667 890.633 670.825 530.420 850.804 510.467 990.561 620.951 520.494 530.291 420.566 730.458 1010.579 980.764 530.559 800.838 910.814 620.598 76
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
MinkowskiNetpermissive0.736 350.859 260.818 170.832 310.709 410.840 350.521 340.853 300.660 260.643 280.951 520.544 340.286 450.731 360.893 180.675 620.772 460.683 210.874 740.852 420.727 27
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
DGNet0.684 550.712 850.784 450.782 580.658 540.835 430.499 470.823 450.641 340.597 540.950 560.487 570.281 480.575 700.619 850.647 750.764 530.620 510.871 800.846 470.688 45
FusionNet0.688 530.704 860.741 750.754 660.656 550.829 490.501 430.741 700.609 480.548 650.950 560.522 460.371 50.633 540.756 590.715 430.771 480.623 490.861 850.814 620.658 53
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
PPCNN++permissive0.663 660.746 660.708 820.722 700.638 650.820 600.451 670.566 1030.599 550.541 670.950 560.510 500.313 300.648 480.819 490.616 870.682 900.590 650.869 810.810 650.656 54
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
ROSMRF3D0.673 610.789 450.748 680.763 640.635 660.814 670.407 890.747 670.581 640.573 600.950 560.484 580.271 570.607 610.754 600.649 720.774 450.596 610.883 630.823 560.606 71
SIConv0.625 880.830 340.694 910.757 650.563 870.772 920.448 710.647 930.520 830.509 800.949 600.431 820.191 930.496 930.614 860.647 750.672 940.535 950.876 700.783 870.571 83
PointMTL0.632 810.731 740.688 960.675 840.591 760.784 850.444 770.565 1040.610 460.492 850.949 600.456 700.254 660.587 650.706 700.599 910.665 960.612 550.868 820.791 840.579 81
ODINpermissive0.744 290.658 940.752 650.870 30.714 400.843 330.569 110.919 50.703 80.622 410.949 600.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 400.725 29
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Virtual MVFusion0.746 260.771 560.819 140.848 150.702 430.865 100.397 920.899 130.699 90.664 210.948 630.588 150.330 240.746 320.851 390.764 210.796 300.704 120.935 210.866 290.728 25
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
FPConvpermissive0.639 750.785 470.760 580.713 750.603 720.798 780.392 950.534 1080.603 530.524 750.948 630.457 690.250 670.538 830.723 670.598 920.696 850.614 520.872 770.799 710.567 87
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
AttAN0.609 930.760 610.667 1000.649 950.521 960.793 810.457 650.648 920.528 810.434 1010.947 650.401 940.153 1070.454 990.721 680.648 740.717 760.536 940.904 450.765 940.485 106
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
PD-Net0.638 760.797 430.769 550.641 990.590 770.820 600.461 640.537 1070.637 360.536 700.947 650.388 970.206 850.656 440.668 790.647 750.732 720.585 690.868 820.793 780.473 110
RFCR0.702 470.889 190.745 710.813 380.672 520.818 640.493 510.815 480.623 400.610 450.947 650.470 640.249 680.594 640.848 400.705 490.779 420.646 380.892 570.823 560.611 67
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
Pointnet++ & Featurepermissive0.557 1030.735 710.661 1020.686 810.491 1000.744 1000.392 950.539 1060.451 1030.375 1070.946 680.376 990.205 860.403 1050.356 1090.553 1010.643 1020.497 1010.824 950.756 970.515 100
HPEIN0.618 910.729 750.668 990.647 960.597 750.766 930.414 860.680 840.520 830.525 740.946 680.432 800.215 810.493 940.599 870.638 800.617 1060.570 720.897 520.806 660.605 73
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
Superpoint Network0.683 580.851 280.728 790.800 500.653 570.806 730.468 600.804 510.572 670.602 510.946 680.453 740.239 720.519 870.822 460.689 590.762 560.595 630.895 540.827 540.630 64
HPGCNN0.656 690.698 890.743 730.650 940.564 860.820 600.505 410.758 630.631 380.479 880.945 710.480 600.226 740.572 710.774 580.690 570.735 700.614 520.853 880.776 910.597 77
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
Feature_GeometricNetpermissive0.690 520.884 200.754 630.795 510.647 600.818 640.422 840.802 530.612 450.604 490.945 710.462 670.189 940.563 750.853 370.726 350.765 520.632 440.904 450.821 590.606 71
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
RandLA-Netpermissive0.645 710.778 500.731 780.699 770.577 820.829 490.446 720.736 710.477 960.523 770.945 710.454 710.269 590.484 960.749 630.618 850.738 680.599 600.827 930.792 810.621 66
contrastBoundarypermissive0.705 450.769 590.775 500.809 420.687 480.820 600.439 800.812 500.661 250.591 570.945 710.515 480.171 990.633 540.856 330.720 390.796 300.668 320.889 590.847 450.689 44
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
Feature-Geometry Netpermissive0.685 540.866 230.748 680.819 350.645 620.794 800.450 700.802 530.587 600.604 490.945 710.464 660.201 890.554 780.840 420.723 380.732 720.602 590.907 430.822 580.603 74
VACNN++0.684 550.728 760.757 620.776 590.690 450.804 750.464 630.816 460.577 660.587 580.945 710.508 510.276 520.671 420.710 690.663 670.750 650.589 660.881 650.832 520.653 55
PointCNN with RGBpermissive0.458 1110.577 1070.611 1110.356 1220.321 1180.715 1040.299 1110.376 1150.328 1180.319 1120.944 770.285 1110.164 1030.216 1190.229 1140.484 1070.545 1130.456 1090.755 1020.709 1070.475 109
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
dtc_net0.625 880.703 870.751 660.794 520.535 930.848 270.480 550.676 870.528 810.469 910.944 770.454 710.004 1210.464 980.636 830.704 500.758 590.548 870.924 300.787 850.492 104
PointNet2-SFPN0.631 820.771 560.692 930.672 850.524 950.837 400.440 790.706 810.538 780.446 960.944 770.421 890.219 790.552 790.751 620.591 940.737 690.543 900.901 500.768 930.557 91
PointConv-SFPN0.641 720.776 520.703 840.721 710.557 890.826 520.451 670.672 880.563 740.483 870.943 800.425 870.162 1040.644 490.726 650.659 690.709 790.572 710.875 710.786 860.559 90
SAFNet-segpermissive0.654 700.752 640.734 770.664 900.583 810.815 660.399 910.754 650.639 350.535 710.942 810.470 640.309 320.665 430.539 930.650 710.708 800.635 430.857 870.793 780.642 59
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
PointSPNet0.637 770.734 720.692 930.714 740.576 830.797 790.446 720.743 690.598 560.437 990.942 810.403 930.150 1080.626 560.800 550.649 720.697 840.557 810.846 900.777 900.563 88
DCM-Net0.658 670.778 500.702 850.806 460.619 690.813 700.468 600.693 830.494 900.524 750.941 830.449 760.298 370.510 890.821 470.675 620.727 740.568 750.826 940.803 690.637 61
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
PCNN0.498 1090.559 1080.644 1060.560 1090.420 1090.711 1050.229 1180.414 1110.436 1060.352 1100.941 830.324 1070.155 1060.238 1160.387 1080.493 1050.529 1150.509 970.813 970.751 990.504 103
LAP-D0.594 950.720 810.692 930.637 1000.456 1050.773 910.391 970.730 730.587 600.445 980.940 850.381 980.288 430.434 1020.453 1030.591 940.649 990.581 700.777 1000.749 1000.610 69
DPC0.592 960.720 810.700 870.602 1050.480 1010.762 960.380 1000.713 790.585 630.437 990.940 850.369 1000.288 430.434 1020.509 990.590 960.639 1040.567 760.772 1010.755 980.592 79
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
DenSeR0.628 860.800 420.625 1080.719 720.545 920.806 730.445 740.597 980.448 1040.519 790.938 870.481 590.328 250.489 950.499 1000.657 700.759 580.592 640.881 650.797 740.634 62
MVPNetpermissive0.641 720.831 330.715 800.671 870.590 770.781 860.394 930.679 850.642 330.553 640.937 880.462 670.256 650.649 460.406 1060.626 830.691 870.666 330.877 690.792 810.608 70
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
DGCNN_reproducecopyleft0.446 1130.474 1170.623 1090.463 1160.366 1130.651 1110.310 1070.389 1140.349 1160.330 1110.937 880.271 1130.126 1110.285 1120.224 1150.350 1180.577 1080.445 1120.625 1140.723 1050.394 114
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
ROSMRF0.580 980.772 550.707 830.681 830.563 870.764 940.362 1020.515 1090.465 1000.465 930.936 900.427 860.207 840.438 1000.577 900.536 1020.675 930.486 1040.723 1070.779 880.524 99
JSENetpermissive0.699 490.881 210.762 570.821 330.667 530.800 770.522 330.792 560.613 440.607 480.935 910.492 540.205 860.576 690.853 370.691 560.758 590.652 360.872 770.828 530.649 56
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
KP-FCNN0.684 550.847 290.758 610.784 560.647 600.814 670.473 570.772 590.605 500.594 560.935 910.450 750.181 970.587 650.805 520.690 570.785 400.614 520.882 640.819 600.632 63
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
SPH3D-GCNpermissive0.610 920.858 270.772 510.489 1140.532 940.792 830.404 900.643 940.570 710.507 830.935 910.414 910.046 1180.510 890.702 720.602 900.705 820.549 860.859 860.773 920.534 97
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
TextureNetpermissive0.566 1010.672 930.664 1010.671 870.494 990.719 1030.445 740.678 860.411 1100.396 1040.935 910.356 1020.225 760.412 1040.535 940.565 1000.636 1050.464 1070.794 990.680 1110.568 86
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
PointContrast_LA_SEM0.683 580.757 630.784 450.786 540.639 640.824 550.408 870.775 580.604 520.541 670.934 950.532 410.269 590.552 790.777 570.645 780.793 340.640 410.913 420.824 550.671 49
wsss-transformer0.600 940.634 990.743 730.697 790.601 740.781 860.437 810.585 1010.493 910.446 960.933 960.394 950.011 1200.654 450.661 820.603 890.733 710.526 960.832 920.761 960.480 107
subcloud_weak0.516 1060.676 910.591 1150.609 1020.442 1060.774 900.335 1050.597 980.422 1090.357 1090.932 970.341 1050.094 1140.298 1110.528 970.473 1090.676 920.495 1020.602 1160.721 1060.349 118
SegGroup_sempermissive0.627 870.818 380.747 700.701 760.602 730.764 940.385 990.629 950.490 920.508 810.931 980.409 920.201 890.564 740.725 660.618 850.692 860.539 920.873 750.794 760.548 94
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
Supervoxel-CNN0.635 790.656 950.711 810.719 720.613 700.757 970.444 770.765 610.534 790.566 610.928 990.478 610.272 550.636 510.531 950.664 660.645 1010.508 990.864 840.792 810.611 67
SPLAT Netcopyleft0.393 1180.472 1180.511 1190.606 1030.311 1190.656 1090.245 1170.405 1120.328 1180.197 1210.927 1000.227 1190.000 1230.001 1240.249 1130.271 1210.510 1160.383 1190.593 1170.699 1090.267 120
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
SALANet0.670 620.816 390.770 540.768 610.652 580.807 720.451 670.747 670.659 280.545 660.924 1010.473 630.149 1090.571 720.811 510.635 820.746 660.623 490.892 570.794 760.570 84
SurfaceConvPF0.442 1140.505 1130.622 1100.380 1210.342 1160.654 1100.227 1190.397 1130.367 1140.276 1160.924 1010.240 1170.198 910.359 1080.262 1120.366 1150.581 1070.435 1140.640 1130.668 1120.398 113
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
CCRFNet0.589 970.766 600.659 1030.683 820.470 1040.740 1010.387 980.620 970.490 920.476 890.922 1030.355 1030.245 700.511 880.511 980.571 990.643 1020.493 1030.872 770.762 950.600 75
FCPNpermissive0.447 1120.679 900.604 1140.578 1080.380 1110.682 1080.291 1120.106 1220.483 950.258 1200.920 1040.258 1150.025 1190.231 1180.325 1100.480 1080.560 1110.463 1080.725 1060.666 1130.231 122
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
FusionAwareConv0.630 850.604 1050.741 750.766 630.590 770.747 990.501 430.734 720.503 890.527 730.919 1050.454 710.323 270.550 810.420 1050.678 610.688 880.544 880.896 530.795 750.627 65
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
Tangent Convolutionspermissive0.438 1160.437 1190.646 1050.474 1150.369 1120.645 1120.353 1030.258 1190.282 1210.279 1150.918 1060.298 1100.147 1100.283 1130.294 1110.487 1060.562 1100.427 1150.619 1150.633 1160.352 117
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DMV, FTSDF0.501 1080.558 1090.608 1130.424 1200.478 1020.690 1060.246 1160.586 1000.468 980.450 950.911 1070.394 950.160 1050.438 1000.212 1160.432 1120.541 1140.475 1060.742 1040.727 1040.477 108
SSC-UNetpermissive0.308 1220.353 1200.290 1230.278 1230.166 1220.553 1200.169 1220.286 1180.147 1230.148 1230.908 1080.182 1210.064 1170.023 1230.018 1230.354 1170.363 1210.345 1210.546 1200.685 1100.278 119
DVVNet0.562 1020.648 960.700 870.770 600.586 800.687 1070.333 1060.650 910.514 860.475 900.906 1090.359 1010.223 780.340 1090.442 1040.422 1130.668 950.501 1000.708 1080.779 880.534 97
ScanNet+FTSDF0.383 1190.297 1210.491 1200.432 1190.358 1150.612 1170.274 1140.116 1210.411 1100.265 1170.904 1100.229 1180.079 1160.250 1140.185 1190.320 1190.510 1160.385 1180.548 1180.597 1210.394 114
GMLPs0.538 1040.495 1140.693 920.647 960.471 1030.793 810.300 1090.477 1100.505 880.358 1080.903 1110.327 1060.081 1150.472 970.529 960.448 1110.710 770.509 970.746 1030.737 1020.554 93
SQN_0.1%0.569 1000.676 910.696 900.657 910.497 980.779 890.424 830.548 1050.515 850.376 1060.902 1120.422 880.357 100.379 1070.456 1020.596 930.659 970.544 880.685 1100.665 1140.556 92
MVF-GNN0.658 670.558 1090.751 660.655 920.690 450.722 1020.453 660.867 240.579 650.576 590.893 1130.523 440.293 400.733 350.571 910.692 540.659 970.606 560.875 710.804 680.668 50
PNET20.442 1140.548 1110.548 1170.597 1060.363 1140.628 1160.300 1090.292 1170.374 1130.307 1130.881 1140.268 1140.186 950.238 1160.204 1180.407 1140.506 1190.449 1100.667 1120.620 1170.462 112
SD-DETR0.576 990.746 660.609 1120.445 1180.517 970.643 1130.366 1010.714 780.456 1020.468 920.870 1150.432 800.264 620.558 770.674 760.586 970.688 880.482 1050.739 1050.733 1030.537 96
3DSM_DMMF0.631 820.626 1000.745 710.801 490.607 710.751 980.506 400.729 740.565 720.491 860.866 1160.434 790.197 920.595 630.630 840.709 460.705 820.560 780.875 710.740 1010.491 105
GrowSP++0.323 1210.114 1230.589 1160.499 1120.147 1230.555 1190.290 1130.336 1160.290 1200.262 1180.865 1170.102 1230.000 1230.037 1220.000 1240.000 1240.462 1200.381 1200.389 1220.664 1150.473 110
PanopticFusion-label0.529 1050.491 1150.688 960.604 1040.386 1100.632 1140.225 1200.705 820.434 1070.293 1140.815 1180.348 1040.241 710.499 920.669 780.507 1040.649 990.442 1130.796 980.602 1180.561 89
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
3DMV0.484 1100.484 1160.538 1180.643 980.424 1080.606 1180.310 1070.574 1020.433 1080.378 1050.796 1190.301 1090.214 820.537 840.208 1170.472 1100.507 1180.413 1160.693 1090.602 1180.539 95
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
ScanNetpermissive0.306 1230.203 1220.366 1220.501 1110.311 1190.524 1210.211 1210.002 1240.342 1170.189 1220.786 1200.145 1220.102 1130.245 1150.152 1200.318 1200.348 1220.300 1220.460 1210.437 1230.182 123
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
Online SegFusion0.515 1070.607 1040.644 1060.579 1070.434 1070.630 1150.353 1030.628 960.440 1050.410 1020.762 1210.307 1080.167 1020.520 860.403 1070.516 1030.565 1090.447 1110.678 1110.701 1080.514 101
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
PointNet++permissive0.339 1200.584 1060.478 1210.458 1170.256 1210.360 1230.250 1150.247 1200.278 1220.261 1190.677 1220.183 1200.117 1120.212 1200.145 1210.364 1160.346 1230.232 1230.548 1180.523 1220.252 121
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
3DWSSS0.425 1170.525 1120.647 1040.522 1100.324 1170.488 1220.077 1230.712 800.353 1150.401 1030.636 1230.281 1120.176 980.340 1090.565 920.175 1220.551 1120.398 1170.370 1230.602 1180.361 116
ERROR0.054 1240.000 1240.041 1240.172 1240.030 1240.062 1240.001 1240.035 1230.004 1240.051 1240.143 1240.019 1240.003 1220.041 1210.050 1220.003 1230.054 1240.018 1240.005 1240.264 1240.082 124