3D Semantic Label Benchmark
The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.
Evaluation and metricsOur evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).
This table lists the benchmark results for the 3D semantic label scenario.
Method | Info | avg iou | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | floor | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | wall | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PonderV2 | 0.785 4 | 0.978 1 | 0.800 29 | 0.833 26 | 0.788 4 | 0.853 19 | 0.545 19 | 0.910 8 | 0.713 2 | 0.705 6 | 0.979 1 | 0.596 9 | 0.390 2 | 0.769 15 | 0.832 44 | 0.821 5 | 0.792 32 | 0.730 2 | 0.975 1 | 0.897 5 | 0.785 6 | |
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | ||||||||||||||||||||||
Mix3D | 0.781 5 | 0.964 2 | 0.855 1 | 0.843 18 | 0.781 7 | 0.858 13 | 0.575 7 | 0.831 36 | 0.685 15 | 0.714 4 | 0.979 1 | 0.594 10 | 0.310 29 | 0.801 2 | 0.892 18 | 0.841 2 | 0.819 5 | 0.723 5 | 0.940 15 | 0.887 7 | 0.725 27 | |
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral) | ||||||||||||||||||||||
PTv3 ScanNet | 0.794 2 | 0.941 3 | 0.813 20 | 0.851 9 | 0.782 6 | 0.890 3 | 0.597 1 | 0.916 5 | 0.696 9 | 0.713 5 | 0.979 1 | 0.635 2 | 0.384 3 | 0.793 3 | 0.907 10 | 0.821 5 | 0.790 33 | 0.696 13 | 0.967 3 | 0.903 2 | 0.805 2 | |
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral) | ||||||||||||||||||||||
ResLFE_HDS | 0.772 8 | 0.939 4 | 0.824 7 | 0.854 7 | 0.771 11 | 0.840 33 | 0.564 11 | 0.900 11 | 0.686 14 | 0.677 14 | 0.961 17 | 0.537 34 | 0.348 12 | 0.769 15 | 0.903 12 | 0.785 13 | 0.815 8 | 0.676 25 | 0.939 16 | 0.880 13 | 0.772 10 | |
PPT-SpUNet-Joint | 0.766 9 | 0.932 5 | 0.794 35 | 0.829 28 | 0.751 25 | 0.854 17 | 0.540 23 | 0.903 10 | 0.630 37 | 0.672 17 | 0.963 15 | 0.565 24 | 0.357 9 | 0.788 5 | 0.900 14 | 0.737 28 | 0.802 17 | 0.685 19 | 0.950 7 | 0.887 7 | 0.780 7 | |
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024 | ||||||||||||||||||||||
ConDaFormer | 0.755 17 | 0.927 6 | 0.822 9 | 0.836 23 | 0.801 1 | 0.849 24 | 0.516 33 | 0.864 25 | 0.651 28 | 0.680 13 | 0.958 23 | 0.584 18 | 0.282 44 | 0.759 23 | 0.855 34 | 0.728 31 | 0.802 17 | 0.678 21 | 0.880 62 | 0.873 23 | 0.756 15 | |
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023 | ||||||||||||||||||||||
OctFormer | 0.766 9 | 0.925 7 | 0.808 25 | 0.849 11 | 0.786 5 | 0.846 29 | 0.566 10 | 0.876 18 | 0.690 11 | 0.674 16 | 0.960 19 | 0.576 20 | 0.226 70 | 0.753 27 | 0.904 11 | 0.777 15 | 0.815 8 | 0.722 6 | 0.923 30 | 0.877 16 | 0.776 9 | |
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | ||||||||||||||||||||||
O-CNN | 0.762 13 | 0.924 8 | 0.823 8 | 0.844 17 | 0.770 12 | 0.852 21 | 0.577 5 | 0.847 31 | 0.711 3 | 0.640 31 | 0.958 23 | 0.592 11 | 0.217 76 | 0.762 20 | 0.888 19 | 0.758 22 | 0.813 12 | 0.726 3 | 0.932 24 | 0.868 24 | 0.744 17 | |
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017 | ||||||||||||||||||||||
CU-Hybrid Net | 0.764 11 | 0.924 8 | 0.819 13 | 0.840 20 | 0.757 20 | 0.853 19 | 0.580 4 | 0.848 29 | 0.709 4 | 0.643 27 | 0.958 23 | 0.587 15 | 0.295 36 | 0.753 27 | 0.884 22 | 0.758 22 | 0.815 8 | 0.725 4 | 0.927 26 | 0.867 25 | 0.743 18 | |
PTv3-PPT-ALC | 0.798 1 | 0.911 10 | 0.812 21 | 0.854 7 | 0.770 12 | 0.856 14 | 0.555 15 | 0.943 1 | 0.660 24 | 0.735 2 | 0.979 1 | 0.606 7 | 0.492 1 | 0.792 4 | 0.934 3 | 0.841 2 | 0.819 5 | 0.716 8 | 0.947 10 | 0.906 1 | 0.822 1 | |
BPNet | 0.749 21 | 0.909 11 | 0.818 15 | 0.811 36 | 0.752 23 | 0.839 35 | 0.485 50 | 0.842 32 | 0.673 19 | 0.644 26 | 0.957 28 | 0.528 40 | 0.305 31 | 0.773 12 | 0.859 29 | 0.788 10 | 0.818 7 | 0.693 15 | 0.916 35 | 0.856 33 | 0.723 28 | |
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral) | ||||||||||||||||||||||
LargeKernel3D | 0.739 32 | 0.909 11 | 0.820 11 | 0.806 42 | 0.740 30 | 0.852 21 | 0.545 19 | 0.826 38 | 0.594 55 | 0.643 27 | 0.955 32 | 0.541 33 | 0.263 60 | 0.723 36 | 0.858 31 | 0.775 17 | 0.767 46 | 0.678 21 | 0.933 22 | 0.848 40 | 0.694 39 | |
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023 | ||||||||||||||||||||||
DMF-Net | 0.752 19 | 0.906 13 | 0.793 37 | 0.802 44 | 0.689 43 | 0.825 49 | 0.556 14 | 0.867 21 | 0.681 16 | 0.602 47 | 0.960 19 | 0.555 30 | 0.365 8 | 0.779 8 | 0.859 29 | 0.747 25 | 0.795 29 | 0.717 7 | 0.917 34 | 0.856 33 | 0.764 12 | |
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023 | ||||||||||||||||||||||
StratifiedFormer | 0.747 24 | 0.901 14 | 0.803 28 | 0.845 16 | 0.757 20 | 0.846 29 | 0.512 35 | 0.825 39 | 0.696 9 | 0.645 25 | 0.956 29 | 0.576 20 | 0.262 61 | 0.744 32 | 0.861 28 | 0.742 26 | 0.770 45 | 0.705 10 | 0.899 47 | 0.860 30 | 0.734 20 | |
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022 | ||||||||||||||||||||||
IPCA | 0.731 35 | 0.890 15 | 0.837 4 | 0.864 3 | 0.726 35 | 0.873 6 | 0.530 28 | 0.824 40 | 0.489 90 | 0.647 24 | 0.978 5 | 0.609 5 | 0.336 18 | 0.624 53 | 0.733 61 | 0.758 22 | 0.776 40 | 0.570 68 | 0.949 8 | 0.877 16 | 0.728 23 | |
RFCR | 0.702 43 | 0.889 16 | 0.745 66 | 0.813 34 | 0.672 48 | 0.818 60 | 0.493 47 | 0.815 44 | 0.623 38 | 0.610 41 | 0.947 60 | 0.470 60 | 0.249 65 | 0.594 59 | 0.848 39 | 0.705 45 | 0.779 38 | 0.646 35 | 0.892 52 | 0.823 52 | 0.611 63 | |
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021 | ||||||||||||||||||||||
Feature_GeometricNet | 0.690 48 | 0.884 17 | 0.754 59 | 0.795 47 | 0.647 56 | 0.818 60 | 0.422 80 | 0.802 49 | 0.612 43 | 0.604 45 | 0.945 66 | 0.462 63 | 0.189 89 | 0.563 70 | 0.853 36 | 0.726 32 | 0.765 48 | 0.632 41 | 0.904 41 | 0.821 55 | 0.606 67 | |
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint | ||||||||||||||||||||||
JSENet | 0.699 45 | 0.881 18 | 0.762 53 | 0.821 29 | 0.667 49 | 0.800 72 | 0.522 30 | 0.792 52 | 0.613 42 | 0.607 44 | 0.935 86 | 0.492 50 | 0.205 81 | 0.576 64 | 0.853 36 | 0.691 52 | 0.758 55 | 0.652 33 | 0.872 72 | 0.828 49 | 0.649 52 | |
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020 | ||||||||||||||||||||||
VMNet | 0.746 25 | 0.870 19 | 0.838 3 | 0.858 5 | 0.729 34 | 0.850 23 | 0.501 40 | 0.874 19 | 0.587 57 | 0.658 21 | 0.956 29 | 0.564 25 | 0.299 34 | 0.765 19 | 0.900 14 | 0.716 39 | 0.812 13 | 0.631 42 | 0.939 16 | 0.858 31 | 0.709 34 | |
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral) | ||||||||||||||||||||||
Feature-Geometry Net | 0.685 50 | 0.866 20 | 0.748 63 | 0.819 31 | 0.645 58 | 0.794 75 | 0.450 66 | 0.802 49 | 0.587 57 | 0.604 45 | 0.945 66 | 0.464 62 | 0.201 84 | 0.554 73 | 0.840 41 | 0.723 35 | 0.732 67 | 0.602 56 | 0.907 39 | 0.822 54 | 0.603 70 | |
Swin3D | 0.779 6 | 0.861 21 | 0.818 15 | 0.836 23 | 0.790 3 | 0.875 5 | 0.576 6 | 0.905 9 | 0.704 6 | 0.739 1 | 0.969 11 | 0.611 3 | 0.349 11 | 0.756 25 | 0.958 1 | 0.702 48 | 0.805 16 | 0.708 9 | 0.916 35 | 0.898 4 | 0.801 3 | |
SAT | 0.742 30 | 0.860 22 | 0.765 52 | 0.819 31 | 0.769 14 | 0.848 26 | 0.533 25 | 0.829 37 | 0.663 22 | 0.631 34 | 0.955 32 | 0.586 16 | 0.274 50 | 0.753 27 | 0.896 16 | 0.729 30 | 0.760 53 | 0.666 31 | 0.921 32 | 0.855 35 | 0.733 21 | |
MinkowskiNet | 0.736 33 | 0.859 23 | 0.818 15 | 0.832 27 | 0.709 38 | 0.840 33 | 0.521 31 | 0.853 27 | 0.660 24 | 0.643 27 | 0.951 48 | 0.544 32 | 0.286 42 | 0.731 34 | 0.893 17 | 0.675 58 | 0.772 42 | 0.683 20 | 0.874 69 | 0.852 38 | 0.727 25 | |
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 | ||||||||||||||||||||||
SPH3D-GCN | 0.610 87 | 0.858 24 | 0.772 47 | 0.489 109 | 0.532 89 | 0.792 78 | 0.404 86 | 0.643 89 | 0.570 67 | 0.507 78 | 0.935 86 | 0.414 87 | 0.046 114 | 0.510 84 | 0.702 69 | 0.602 85 | 0.705 77 | 0.549 82 | 0.859 81 | 0.773 87 | 0.534 93 | |
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020 | ||||||||||||||||||||||
Superpoint Network | 0.683 54 | 0.851 25 | 0.728 74 | 0.800 46 | 0.653 53 | 0.806 68 | 0.468 56 | 0.804 47 | 0.572 64 | 0.602 47 | 0.946 63 | 0.453 70 | 0.239 69 | 0.519 82 | 0.822 45 | 0.689 55 | 0.762 52 | 0.595 60 | 0.895 50 | 0.827 50 | 0.630 60 | |
KP-FCNN | 0.684 51 | 0.847 26 | 0.758 57 | 0.784 52 | 0.647 56 | 0.814 63 | 0.473 53 | 0.772 55 | 0.605 48 | 0.594 52 | 0.935 86 | 0.450 71 | 0.181 92 | 0.587 60 | 0.805 51 | 0.690 53 | 0.785 36 | 0.614 49 | 0.882 59 | 0.819 56 | 0.632 59 | |
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019 | ||||||||||||||||||||||
DTC | 0.757 15 | 0.843 27 | 0.820 11 | 0.847 14 | 0.791 2 | 0.862 11 | 0.511 36 | 0.870 20 | 0.707 5 | 0.652 23 | 0.954 38 | 0.604 8 | 0.279 47 | 0.760 21 | 0.942 2 | 0.734 29 | 0.766 47 | 0.701 12 | 0.884 57 | 0.874 22 | 0.736 19 | |
Retro-FPN | 0.744 28 | 0.842 28 | 0.800 29 | 0.767 58 | 0.740 30 | 0.836 38 | 0.541 21 | 0.914 6 | 0.672 20 | 0.626 35 | 0.958 23 | 0.552 31 | 0.272 52 | 0.777 9 | 0.886 21 | 0.696 49 | 0.801 21 | 0.674 28 | 0.941 14 | 0.858 31 | 0.717 30 | |
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023 | ||||||||||||||||||||||
PointMetaBase | 0.714 40 | 0.835 29 | 0.785 41 | 0.821 29 | 0.684 45 | 0.846 29 | 0.531 27 | 0.865 24 | 0.614 41 | 0.596 51 | 0.953 42 | 0.500 48 | 0.246 66 | 0.674 39 | 0.888 19 | 0.692 50 | 0.764 49 | 0.624 45 | 0.849 84 | 0.844 45 | 0.675 44 | |
MVPNet | 0.641 68 | 0.831 30 | 0.715 75 | 0.671 83 | 0.590 73 | 0.781 81 | 0.394 89 | 0.679 81 | 0.642 31 | 0.553 60 | 0.937 83 | 0.462 63 | 0.256 62 | 0.649 44 | 0.406 102 | 0.626 78 | 0.691 82 | 0.666 31 | 0.877 64 | 0.792 76 | 0.608 66 | |
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019 | ||||||||||||||||||||||
SConv | 0.636 74 | 0.830 31 | 0.697 84 | 0.752 63 | 0.572 81 | 0.780 83 | 0.445 70 | 0.716 72 | 0.529 76 | 0.530 68 | 0.951 48 | 0.446 74 | 0.170 95 | 0.507 87 | 0.666 76 | 0.636 76 | 0.682 85 | 0.541 87 | 0.886 56 | 0.799 66 | 0.594 74 | |
SIConv | 0.625 84 | 0.830 31 | 0.694 86 | 0.757 61 | 0.563 83 | 0.772 87 | 0.448 67 | 0.647 88 | 0.520 79 | 0.509 75 | 0.949 56 | 0.431 78 | 0.191 88 | 0.496 89 | 0.614 82 | 0.647 71 | 0.672 89 | 0.535 90 | 0.876 65 | 0.783 82 | 0.571 79 | |
One Thing One Click | 0.701 44 | 0.825 33 | 0.796 33 | 0.723 65 | 0.716 37 | 0.832 42 | 0.433 78 | 0.816 42 | 0.634 35 | 0.609 42 | 0.969 11 | 0.418 86 | 0.344 14 | 0.559 71 | 0.833 43 | 0.715 40 | 0.808 15 | 0.560 74 | 0.902 44 | 0.847 41 | 0.680 43 | |
O3DSeg | 0.668 59 | 0.822 34 | 0.771 49 | 0.496 108 | 0.651 55 | 0.833 41 | 0.541 21 | 0.761 58 | 0.555 72 | 0.611 40 | 0.966 14 | 0.489 52 | 0.370 6 | 0.388 102 | 0.580 84 | 0.776 16 | 0.751 59 | 0.570 68 | 0.956 6 | 0.817 57 | 0.646 54 | |
SegGroup_sem | 0.627 83 | 0.818 35 | 0.747 65 | 0.701 72 | 0.602 69 | 0.764 89 | 0.385 94 | 0.629 90 | 0.490 88 | 0.508 76 | 0.931 93 | 0.409 88 | 0.201 84 | 0.564 69 | 0.725 63 | 0.618 80 | 0.692 81 | 0.539 88 | 0.873 70 | 0.794 71 | 0.548 90 | |
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022 | ||||||||||||||||||||||
LRPNet | 0.742 30 | 0.816 36 | 0.806 26 | 0.807 40 | 0.752 23 | 0.828 47 | 0.575 7 | 0.839 34 | 0.699 7 | 0.637 32 | 0.954 38 | 0.520 43 | 0.320 26 | 0.755 26 | 0.834 42 | 0.760 21 | 0.772 42 | 0.676 25 | 0.915 37 | 0.862 28 | 0.717 30 | |
SALANet | 0.670 58 | 0.816 36 | 0.770 50 | 0.768 57 | 0.652 54 | 0.807 67 | 0.451 63 | 0.747 63 | 0.659 26 | 0.545 62 | 0.924 96 | 0.473 59 | 0.149 104 | 0.571 67 | 0.811 50 | 0.635 77 | 0.746 62 | 0.623 46 | 0.892 52 | 0.794 71 | 0.570 80 | |
MatchingNet | 0.724 38 | 0.812 38 | 0.812 21 | 0.810 37 | 0.735 32 | 0.834 40 | 0.495 46 | 0.860 26 | 0.572 64 | 0.602 47 | 0.954 38 | 0.512 45 | 0.280 46 | 0.757 24 | 0.845 40 | 0.725 33 | 0.780 37 | 0.606 53 | 0.937 18 | 0.851 39 | 0.700 38 | |
DITR ScanNet | 0.793 3 | 0.811 39 | 0.852 2 | 0.889 1 | 0.774 9 | 0.907 1 | 0.592 2 | 0.927 3 | 0.719 1 | 0.718 3 | 0.961 17 | 0.652 1 | 0.348 12 | 0.817 1 | 0.927 5 | 0.795 9 | 0.824 2 | 0.749 1 | 0.948 9 | 0.887 7 | 0.771 11 | |
DenSeR | 0.628 82 | 0.800 40 | 0.625 104 | 0.719 68 | 0.545 87 | 0.806 68 | 0.445 70 | 0.597 93 | 0.448 100 | 0.519 74 | 0.938 82 | 0.481 55 | 0.328 23 | 0.489 91 | 0.499 95 | 0.657 66 | 0.759 54 | 0.592 61 | 0.881 60 | 0.797 69 | 0.634 58 | |
PD-Net | 0.638 72 | 0.797 41 | 0.769 51 | 0.641 96 | 0.590 73 | 0.820 56 | 0.461 60 | 0.537 103 | 0.637 34 | 0.536 66 | 0.947 60 | 0.388 93 | 0.206 80 | 0.656 42 | 0.668 75 | 0.647 71 | 0.732 67 | 0.585 65 | 0.868 77 | 0.793 73 | 0.473 106 | |
PointConvFormer | 0.749 21 | 0.793 42 | 0.790 38 | 0.807 40 | 0.750 27 | 0.856 14 | 0.524 29 | 0.881 17 | 0.588 56 | 0.642 30 | 0.977 9 | 0.591 12 | 0.274 50 | 0.781 7 | 0.929 4 | 0.804 7 | 0.796 26 | 0.642 37 | 0.947 10 | 0.885 10 | 0.715 33 | |
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution. | ||||||||||||||||||||||
ROSMRF3D | 0.673 57 | 0.789 43 | 0.748 63 | 0.763 60 | 0.635 62 | 0.814 63 | 0.407 85 | 0.747 63 | 0.581 61 | 0.573 56 | 0.950 52 | 0.484 54 | 0.271 54 | 0.607 57 | 0.754 57 | 0.649 68 | 0.774 41 | 0.596 58 | 0.883 58 | 0.823 52 | 0.606 67 | |
PNE | 0.755 17 | 0.786 44 | 0.835 5 | 0.834 25 | 0.758 18 | 0.849 24 | 0.570 9 | 0.836 35 | 0.648 30 | 0.668 19 | 0.978 5 | 0.581 19 | 0.367 7 | 0.683 38 | 0.856 32 | 0.804 7 | 0.801 21 | 0.678 21 | 0.961 5 | 0.889 6 | 0.716 32 | |
P. Hermosilla: Point Neighborhood Embeddings. | ||||||||||||||||||||||
FPConv | 0.639 71 | 0.785 45 | 0.760 54 | 0.713 71 | 0.603 68 | 0.798 73 | 0.392 90 | 0.534 104 | 0.603 50 | 0.524 71 | 0.948 58 | 0.457 65 | 0.250 64 | 0.538 78 | 0.723 64 | 0.598 87 | 0.696 80 | 0.614 49 | 0.872 72 | 0.799 66 | 0.567 83 | |
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020 | ||||||||||||||||||||||
OA-CNN-L_ScanNet20 | 0.756 16 | 0.783 46 | 0.826 6 | 0.858 5 | 0.776 8 | 0.837 36 | 0.548 18 | 0.896 14 | 0.649 29 | 0.675 15 | 0.962 16 | 0.586 16 | 0.335 20 | 0.771 14 | 0.802 52 | 0.770 18 | 0.787 35 | 0.691 16 | 0.936 19 | 0.880 13 | 0.761 13 | |
PointConv | 0.666 60 | 0.781 47 | 0.759 55 | 0.699 73 | 0.644 59 | 0.822 53 | 0.475 52 | 0.779 53 | 0.564 69 | 0.504 79 | 0.953 42 | 0.428 80 | 0.203 83 | 0.586 62 | 0.754 57 | 0.661 64 | 0.753 58 | 0.588 64 | 0.902 44 | 0.813 60 | 0.642 55 | |
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019 | ||||||||||||||||||||||
DCM-Net | 0.658 63 | 0.778 48 | 0.702 80 | 0.806 42 | 0.619 65 | 0.813 66 | 0.468 56 | 0.693 79 | 0.494 86 | 0.524 71 | 0.941 78 | 0.449 72 | 0.298 35 | 0.510 84 | 0.821 46 | 0.675 58 | 0.727 69 | 0.568 71 | 0.826 89 | 0.803 65 | 0.637 57 | |
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral] | ||||||||||||||||||||||
RandLA-Net | 0.645 67 | 0.778 48 | 0.731 73 | 0.699 73 | 0.577 78 | 0.829 45 | 0.446 68 | 0.736 67 | 0.477 92 | 0.523 73 | 0.945 66 | 0.454 67 | 0.269 56 | 0.484 92 | 0.749 60 | 0.618 80 | 0.738 63 | 0.599 57 | 0.827 88 | 0.792 76 | 0.621 62 | |
RPN | 0.736 33 | 0.776 50 | 0.790 38 | 0.851 9 | 0.754 22 | 0.854 17 | 0.491 49 | 0.866 23 | 0.596 54 | 0.686 9 | 0.955 32 | 0.536 35 | 0.342 15 | 0.624 53 | 0.869 25 | 0.787 11 | 0.802 17 | 0.628 43 | 0.927 26 | 0.875 20 | 0.704 36 | |
PointConv-SFPN | 0.641 68 | 0.776 50 | 0.703 79 | 0.721 67 | 0.557 85 | 0.826 48 | 0.451 63 | 0.672 84 | 0.563 70 | 0.483 82 | 0.943 75 | 0.425 83 | 0.162 99 | 0.644 46 | 0.726 62 | 0.659 65 | 0.709 74 | 0.572 67 | 0.875 66 | 0.786 81 | 0.559 86 | |
ClickSeg_Semantic | 0.703 42 | 0.774 52 | 0.800 29 | 0.793 49 | 0.760 17 | 0.847 28 | 0.471 54 | 0.802 49 | 0.463 97 | 0.634 33 | 0.968 13 | 0.491 51 | 0.271 54 | 0.726 35 | 0.910 9 | 0.706 44 | 0.815 8 | 0.551 80 | 0.878 63 | 0.833 46 | 0.570 80 | |
ROSMRF | 0.580 93 | 0.772 53 | 0.707 78 | 0.681 79 | 0.563 83 | 0.764 89 | 0.362 97 | 0.515 105 | 0.465 96 | 0.465 88 | 0.936 85 | 0.427 82 | 0.207 79 | 0.438 96 | 0.577 85 | 0.536 97 | 0.675 88 | 0.486 99 | 0.723 103 | 0.779 83 | 0.524 96 | |
PointNet2-SFPN | 0.631 78 | 0.771 54 | 0.692 88 | 0.672 81 | 0.524 90 | 0.837 36 | 0.440 75 | 0.706 77 | 0.538 74 | 0.446 91 | 0.944 72 | 0.421 85 | 0.219 75 | 0.552 74 | 0.751 59 | 0.591 89 | 0.737 64 | 0.543 86 | 0.901 46 | 0.768 88 | 0.557 87 | |
Virtual MVFusion | 0.746 25 | 0.771 54 | 0.819 13 | 0.848 13 | 0.702 40 | 0.865 10 | 0.397 88 | 0.899 12 | 0.699 7 | 0.664 20 | 0.948 58 | 0.588 14 | 0.330 22 | 0.746 31 | 0.851 38 | 0.764 20 | 0.796 26 | 0.704 11 | 0.935 20 | 0.866 26 | 0.728 23 | |
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020 | ||||||||||||||||||||||
VI-PointConv | 0.676 56 | 0.770 56 | 0.754 59 | 0.783 53 | 0.621 64 | 0.814 63 | 0.552 16 | 0.758 59 | 0.571 66 | 0.557 59 | 0.954 38 | 0.529 39 | 0.268 58 | 0.530 80 | 0.682 72 | 0.675 58 | 0.719 70 | 0.603 55 | 0.888 55 | 0.833 46 | 0.665 47 | |
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions. | ||||||||||||||||||||||
contrastBoundary | 0.705 41 | 0.769 57 | 0.775 46 | 0.809 38 | 0.687 44 | 0.820 56 | 0.439 76 | 0.812 46 | 0.661 23 | 0.591 53 | 0.945 66 | 0.515 44 | 0.171 94 | 0.633 50 | 0.856 32 | 0.720 36 | 0.796 26 | 0.668 30 | 0.889 54 | 0.847 41 | 0.689 40 | |
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022 | ||||||||||||||||||||||
CCRFNet | 0.589 92 | 0.766 58 | 0.659 99 | 0.683 78 | 0.470 100 | 0.740 96 | 0.387 93 | 0.620 92 | 0.490 88 | 0.476 84 | 0.922 98 | 0.355 99 | 0.245 67 | 0.511 83 | 0.511 93 | 0.571 94 | 0.643 97 | 0.493 98 | 0.872 72 | 0.762 90 | 0.600 71 | |
AttAN | 0.609 88 | 0.760 59 | 0.667 95 | 0.649 91 | 0.521 91 | 0.793 76 | 0.457 61 | 0.648 87 | 0.528 77 | 0.434 96 | 0.947 60 | 0.401 90 | 0.153 102 | 0.454 95 | 0.721 65 | 0.648 70 | 0.717 71 | 0.536 89 | 0.904 41 | 0.765 89 | 0.485 102 | |
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020 | ||||||||||||||||||||||
OccuSeg+Semantic | 0.764 11 | 0.758 60 | 0.796 33 | 0.839 21 | 0.746 28 | 0.907 1 | 0.562 12 | 0.850 28 | 0.680 17 | 0.672 17 | 0.978 5 | 0.610 4 | 0.335 20 | 0.777 9 | 0.819 48 | 0.847 1 | 0.830 1 | 0.691 16 | 0.972 2 | 0.885 10 | 0.727 25 | |
PointContrast_LA_SEM | 0.683 54 | 0.757 61 | 0.784 42 | 0.786 50 | 0.639 60 | 0.824 51 | 0.408 83 | 0.775 54 | 0.604 49 | 0.541 63 | 0.934 90 | 0.532 38 | 0.269 56 | 0.552 74 | 0.777 54 | 0.645 74 | 0.793 30 | 0.640 38 | 0.913 38 | 0.824 51 | 0.671 45 | |
SAFNet-seg | 0.654 66 | 0.752 62 | 0.734 72 | 0.664 86 | 0.583 77 | 0.815 62 | 0.399 87 | 0.754 61 | 0.639 33 | 0.535 67 | 0.942 76 | 0.470 60 | 0.309 30 | 0.665 41 | 0.539 88 | 0.650 67 | 0.708 75 | 0.635 40 | 0.857 82 | 0.793 73 | 0.642 55 | |
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021 | ||||||||||||||||||||||
INS-Conv-semantic | 0.717 39 | 0.751 63 | 0.759 55 | 0.812 35 | 0.704 39 | 0.868 8 | 0.537 24 | 0.842 32 | 0.609 46 | 0.608 43 | 0.953 42 | 0.534 37 | 0.293 37 | 0.616 56 | 0.864 27 | 0.719 38 | 0.793 30 | 0.640 38 | 0.933 22 | 0.845 44 | 0.663 48 | |
Weakly-Openseg v3 | 0.489 105 | 0.749 64 | 0.664 96 | 0.646 94 | 0.496 94 | 0.559 114 | 0.122 117 | 0.577 97 | 0.257 117 | 0.364 103 | 0.805 113 | 0.198 115 | 0.096 109 | 0.510 84 | 0.496 96 | 0.361 112 | 0.563 105 | 0.359 115 | 0.777 95 | 0.644 110 | 0.532 95 | |
PPCNN++ | 0.663 62 | 0.746 65 | 0.708 77 | 0.722 66 | 0.638 61 | 0.820 56 | 0.451 63 | 0.566 99 | 0.599 52 | 0.541 63 | 0.950 52 | 0.510 46 | 0.313 28 | 0.648 45 | 0.819 48 | 0.616 82 | 0.682 85 | 0.590 62 | 0.869 76 | 0.810 61 | 0.656 50 | |
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access | ||||||||||||||||||||||
SD-DETR | 0.576 94 | 0.746 65 | 0.609 108 | 0.445 113 | 0.517 92 | 0.643 108 | 0.366 96 | 0.714 74 | 0.456 98 | 0.468 87 | 0.870 110 | 0.432 76 | 0.264 59 | 0.558 72 | 0.674 73 | 0.586 92 | 0.688 83 | 0.482 100 | 0.739 101 | 0.733 98 | 0.537 92 | |
One-Thing-One-Click | 0.693 46 | 0.743 67 | 0.794 35 | 0.655 88 | 0.684 45 | 0.822 53 | 0.497 45 | 0.719 71 | 0.622 39 | 0.617 38 | 0.977 9 | 0.447 73 | 0.339 16 | 0.750 30 | 0.664 77 | 0.703 47 | 0.790 33 | 0.596 58 | 0.946 12 | 0.855 35 | 0.647 53 | |
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021 | ||||||||||||||||||||||
APCF-Net | 0.631 78 | 0.742 68 | 0.687 93 | 0.672 81 | 0.557 85 | 0.792 78 | 0.408 83 | 0.665 85 | 0.545 73 | 0.508 76 | 0.952 46 | 0.428 80 | 0.186 90 | 0.634 49 | 0.702 69 | 0.620 79 | 0.706 76 | 0.555 78 | 0.873 70 | 0.798 68 | 0.581 76 | |
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL | ||||||||||||||||||||||
PointTransformerV2 | 0.752 19 | 0.742 68 | 0.809 24 | 0.872 2 | 0.758 18 | 0.860 12 | 0.552 16 | 0.891 16 | 0.610 44 | 0.687 8 | 0.960 19 | 0.559 28 | 0.304 32 | 0.766 18 | 0.926 6 | 0.767 19 | 0.797 25 | 0.644 36 | 0.942 13 | 0.876 19 | 0.722 29 | |
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022 | ||||||||||||||||||||||
Pointnet++ & Feature | 0.557 98 | 0.735 70 | 0.661 98 | 0.686 77 | 0.491 96 | 0.744 95 | 0.392 90 | 0.539 102 | 0.451 99 | 0.375 102 | 0.946 63 | 0.376 95 | 0.205 81 | 0.403 101 | 0.356 105 | 0.553 96 | 0.643 97 | 0.497 96 | 0.824 90 | 0.756 92 | 0.515 97 | |
PointSPNet | 0.637 73 | 0.734 71 | 0.692 88 | 0.714 70 | 0.576 79 | 0.797 74 | 0.446 68 | 0.743 65 | 0.598 53 | 0.437 94 | 0.942 76 | 0.403 89 | 0.150 103 | 0.626 52 | 0.800 53 | 0.649 68 | 0.697 79 | 0.557 77 | 0.846 85 | 0.777 85 | 0.563 84 | |
PicassoNet-II | 0.692 47 | 0.732 72 | 0.772 47 | 0.786 50 | 0.677 47 | 0.866 9 | 0.517 32 | 0.848 29 | 0.509 83 | 0.626 35 | 0.952 46 | 0.536 35 | 0.225 72 | 0.545 77 | 0.704 68 | 0.689 55 | 0.810 14 | 0.564 73 | 0.903 43 | 0.854 37 | 0.729 22 | |
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes. | ||||||||||||||||||||||
PointMTL | 0.632 77 | 0.731 73 | 0.688 91 | 0.675 80 | 0.591 72 | 0.784 80 | 0.444 73 | 0.565 100 | 0.610 44 | 0.492 80 | 0.949 56 | 0.456 66 | 0.254 63 | 0.587 60 | 0.706 67 | 0.599 86 | 0.665 91 | 0.612 52 | 0.868 77 | 0.791 79 | 0.579 77 | |
HPEIN | 0.618 86 | 0.729 74 | 0.668 94 | 0.647 92 | 0.597 71 | 0.766 88 | 0.414 82 | 0.680 80 | 0.520 79 | 0.525 70 | 0.946 63 | 0.432 76 | 0.215 77 | 0.493 90 | 0.599 83 | 0.638 75 | 0.617 101 | 0.570 68 | 0.897 48 | 0.806 62 | 0.605 69 | |
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019 | ||||||||||||||||||||||
VACNN++ | 0.684 51 | 0.728 75 | 0.757 58 | 0.776 55 | 0.690 41 | 0.804 70 | 0.464 59 | 0.816 42 | 0.577 63 | 0.587 54 | 0.945 66 | 0.508 47 | 0.276 49 | 0.671 40 | 0.710 66 | 0.663 63 | 0.750 61 | 0.589 63 | 0.881 60 | 0.832 48 | 0.653 51 | |
PointTransformer++ | 0.725 36 | 0.727 76 | 0.811 23 | 0.819 31 | 0.765 15 | 0.841 32 | 0.502 39 | 0.814 45 | 0.621 40 | 0.623 37 | 0.955 32 | 0.556 29 | 0.284 43 | 0.620 55 | 0.866 26 | 0.781 14 | 0.757 57 | 0.648 34 | 0.932 24 | 0.862 28 | 0.709 34 | |
DiffSeg3D2 | 0.745 27 | 0.725 77 | 0.814 19 | 0.837 22 | 0.751 25 | 0.831 43 | 0.514 34 | 0.896 14 | 0.674 18 | 0.684 11 | 0.960 19 | 0.564 25 | 0.303 33 | 0.773 12 | 0.820 47 | 0.713 42 | 0.798 24 | 0.690 18 | 0.923 30 | 0.875 20 | 0.757 14 | |
DiffSegNet | 0.758 14 | 0.725 77 | 0.789 40 | 0.843 18 | 0.762 16 | 0.856 14 | 0.562 12 | 0.920 4 | 0.657 27 | 0.658 21 | 0.958 23 | 0.589 13 | 0.337 17 | 0.782 6 | 0.879 23 | 0.787 11 | 0.779 38 | 0.678 21 | 0.926 28 | 0.880 13 | 0.799 4 | |
DPC | 0.592 91 | 0.720 79 | 0.700 82 | 0.602 101 | 0.480 97 | 0.762 91 | 0.380 95 | 0.713 75 | 0.585 60 | 0.437 94 | 0.940 80 | 0.369 96 | 0.288 40 | 0.434 98 | 0.509 94 | 0.590 91 | 0.639 99 | 0.567 72 | 0.772 97 | 0.755 93 | 0.592 75 | |
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020 | ||||||||||||||||||||||
LAP-D | 0.594 90 | 0.720 79 | 0.692 88 | 0.637 97 | 0.456 101 | 0.773 86 | 0.391 92 | 0.730 69 | 0.587 57 | 0.445 93 | 0.940 80 | 0.381 94 | 0.288 40 | 0.434 98 | 0.453 99 | 0.591 89 | 0.649 94 | 0.581 66 | 0.777 95 | 0.749 95 | 0.610 65 | |
PointMRNet | 0.640 70 | 0.717 81 | 0.701 81 | 0.692 76 | 0.576 79 | 0.801 71 | 0.467 58 | 0.716 72 | 0.563 70 | 0.459 89 | 0.953 42 | 0.429 79 | 0.169 96 | 0.581 63 | 0.854 35 | 0.605 83 | 0.710 72 | 0.550 81 | 0.894 51 | 0.793 73 | 0.575 78 | |
DGNet | 0.684 51 | 0.712 82 | 0.784 42 | 0.782 54 | 0.658 50 | 0.835 39 | 0.499 44 | 0.823 41 | 0.641 32 | 0.597 50 | 0.950 52 | 0.487 53 | 0.281 45 | 0.575 65 | 0.619 81 | 0.647 71 | 0.764 49 | 0.620 48 | 0.871 75 | 0.846 43 | 0.688 41 | |
FusionNet | 0.688 49 | 0.704 83 | 0.741 70 | 0.754 62 | 0.656 51 | 0.829 45 | 0.501 40 | 0.741 66 | 0.609 46 | 0.548 61 | 0.950 52 | 0.522 42 | 0.371 5 | 0.633 50 | 0.756 56 | 0.715 40 | 0.771 44 | 0.623 46 | 0.861 80 | 0.814 58 | 0.658 49 | |
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020 | ||||||||||||||||||||||
PointASNL | 0.666 60 | 0.703 84 | 0.781 44 | 0.751 64 | 0.655 52 | 0.830 44 | 0.471 54 | 0.769 56 | 0.474 93 | 0.537 65 | 0.951 48 | 0.475 58 | 0.279 47 | 0.635 48 | 0.698 71 | 0.675 58 | 0.751 59 | 0.553 79 | 0.816 91 | 0.806 62 | 0.703 37 | |
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020 | ||||||||||||||||||||||
dtc_net | 0.625 84 | 0.703 84 | 0.751 61 | 0.794 48 | 0.535 88 | 0.848 26 | 0.480 51 | 0.676 83 | 0.528 77 | 0.469 86 | 0.944 72 | 0.454 67 | 0.004 117 | 0.464 94 | 0.636 79 | 0.704 46 | 0.758 55 | 0.548 83 | 0.924 29 | 0.787 80 | 0.492 100 | |
HPGCNN | 0.656 65 | 0.698 86 | 0.743 68 | 0.650 90 | 0.564 82 | 0.820 56 | 0.505 38 | 0.758 59 | 0.631 36 | 0.479 83 | 0.945 66 | 0.480 56 | 0.226 70 | 0.572 66 | 0.774 55 | 0.690 53 | 0.735 65 | 0.614 49 | 0.853 83 | 0.776 86 | 0.597 73 | |
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN. | ||||||||||||||||||||||
FCPN | 0.447 108 | 0.679 87 | 0.604 110 | 0.578 104 | 0.380 107 | 0.682 103 | 0.291 107 | 0.106 117 | 0.483 91 | 0.258 115 | 0.920 99 | 0.258 111 | 0.025 115 | 0.231 114 | 0.325 106 | 0.480 103 | 0.560 107 | 0.463 103 | 0.725 102 | 0.666 108 | 0.231 117 | |
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018 | ||||||||||||||||||||||
SQN_0.1% | 0.569 95 | 0.676 88 | 0.696 85 | 0.657 87 | 0.497 93 | 0.779 84 | 0.424 79 | 0.548 101 | 0.515 81 | 0.376 101 | 0.902 107 | 0.422 84 | 0.357 9 | 0.379 103 | 0.456 98 | 0.596 88 | 0.659 92 | 0.544 84 | 0.685 106 | 0.665 109 | 0.556 88 | |
subcloud_weak | 0.516 101 | 0.676 88 | 0.591 111 | 0.609 98 | 0.442 102 | 0.774 85 | 0.335 100 | 0.597 93 | 0.422 105 | 0.357 105 | 0.932 92 | 0.341 101 | 0.094 110 | 0.298 107 | 0.528 92 | 0.473 104 | 0.676 87 | 0.495 97 | 0.602 112 | 0.721 101 | 0.349 113 | |
TextureNet | 0.566 96 | 0.672 90 | 0.664 96 | 0.671 83 | 0.494 95 | 0.719 98 | 0.445 70 | 0.678 82 | 0.411 106 | 0.396 99 | 0.935 86 | 0.356 98 | 0.225 72 | 0.412 100 | 0.535 89 | 0.565 95 | 0.636 100 | 0.464 102 | 0.794 94 | 0.680 106 | 0.568 82 | |
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR | ||||||||||||||||||||||
Supervoxel-CNN | 0.635 75 | 0.656 91 | 0.711 76 | 0.719 68 | 0.613 66 | 0.757 92 | 0.444 73 | 0.765 57 | 0.534 75 | 0.566 57 | 0.928 94 | 0.478 57 | 0.272 52 | 0.636 47 | 0.531 90 | 0.664 62 | 0.645 96 | 0.508 94 | 0.864 79 | 0.792 76 | 0.611 63 | |
DVVNet | 0.562 97 | 0.648 92 | 0.700 82 | 0.770 56 | 0.586 76 | 0.687 102 | 0.333 101 | 0.650 86 | 0.514 82 | 0.475 85 | 0.906 104 | 0.359 97 | 0.223 74 | 0.340 105 | 0.442 100 | 0.422 108 | 0.668 90 | 0.501 95 | 0.708 104 | 0.779 83 | 0.534 93 | |
SparseConvNet | 0.725 36 | 0.647 93 | 0.821 10 | 0.846 15 | 0.721 36 | 0.869 7 | 0.533 25 | 0.754 61 | 0.603 50 | 0.614 39 | 0.955 32 | 0.572 22 | 0.325 24 | 0.710 37 | 0.870 24 | 0.724 34 | 0.823 3 | 0.628 43 | 0.934 21 | 0.865 27 | 0.683 42 | |
TTT-KD | 0.773 7 | 0.646 94 | 0.818 15 | 0.809 38 | 0.774 9 | 0.878 4 | 0.581 3 | 0.943 1 | 0.687 13 | 0.704 7 | 0.978 5 | 0.607 6 | 0.336 18 | 0.775 11 | 0.912 8 | 0.838 4 | 0.823 3 | 0.694 14 | 0.967 3 | 0.899 3 | 0.794 5 | |
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models. | ||||||||||||||||||||||
wsss-transformer | 0.600 89 | 0.634 95 | 0.743 68 | 0.697 75 | 0.601 70 | 0.781 81 | 0.437 77 | 0.585 96 | 0.493 87 | 0.446 91 | 0.933 91 | 0.394 91 | 0.011 116 | 0.654 43 | 0.661 78 | 0.603 84 | 0.733 66 | 0.526 91 | 0.832 87 | 0.761 91 | 0.480 103 | |
3DSM_DMMF | 0.631 78 | 0.626 96 | 0.745 66 | 0.801 45 | 0.607 67 | 0.751 93 | 0.506 37 | 0.729 70 | 0.565 68 | 0.491 81 | 0.866 111 | 0.434 75 | 0.197 87 | 0.595 58 | 0.630 80 | 0.709 43 | 0.705 77 | 0.560 74 | 0.875 66 | 0.740 96 | 0.491 101 | |
MSP | 0.748 23 | 0.623 97 | 0.804 27 | 0.859 4 | 0.745 29 | 0.824 51 | 0.501 40 | 0.912 7 | 0.690 11 | 0.685 10 | 0.956 29 | 0.567 23 | 0.320 26 | 0.768 17 | 0.918 7 | 0.720 36 | 0.802 17 | 0.676 25 | 0.921 32 | 0.881 12 | 0.779 8 | |
EQ-Net | 0.743 29 | 0.620 98 | 0.799 32 | 0.849 11 | 0.730 33 | 0.822 53 | 0.493 47 | 0.897 13 | 0.664 21 | 0.681 12 | 0.955 32 | 0.562 27 | 0.378 4 | 0.760 21 | 0.903 12 | 0.738 27 | 0.801 21 | 0.673 29 | 0.907 39 | 0.877 16 | 0.745 16 | |
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022 | ||||||||||||||||||||||
joint point-based | 0.634 76 | 0.614 99 | 0.778 45 | 0.667 85 | 0.633 63 | 0.825 49 | 0.420 81 | 0.804 47 | 0.467 95 | 0.561 58 | 0.951 48 | 0.494 49 | 0.291 39 | 0.566 68 | 0.458 97 | 0.579 93 | 0.764 49 | 0.559 76 | 0.838 86 | 0.814 58 | 0.598 72 | |
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019 | ||||||||||||||||||||||
Online SegFusion | 0.515 102 | 0.607 100 | 0.644 102 | 0.579 103 | 0.434 103 | 0.630 110 | 0.353 98 | 0.628 91 | 0.440 101 | 0.410 97 | 0.762 116 | 0.307 104 | 0.167 97 | 0.520 81 | 0.403 103 | 0.516 98 | 0.565 104 | 0.447 106 | 0.678 107 | 0.701 103 | 0.514 98 | |
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission | ||||||||||||||||||||||
FusionAwareConv | 0.630 81 | 0.604 101 | 0.741 70 | 0.766 59 | 0.590 73 | 0.747 94 | 0.501 40 | 0.734 68 | 0.503 85 | 0.527 69 | 0.919 100 | 0.454 67 | 0.323 25 | 0.550 76 | 0.420 101 | 0.678 57 | 0.688 83 | 0.544 84 | 0.896 49 | 0.795 70 | 0.627 61 | |
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020 | ||||||||||||||||||||||
PointNet++ | 0.339 116 | 0.584 102 | 0.478 116 | 0.458 112 | 0.256 117 | 0.360 118 | 0.250 109 | 0.247 115 | 0.278 116 | 0.261 114 | 0.677 117 | 0.183 116 | 0.117 107 | 0.212 116 | 0.145 117 | 0.364 111 | 0.346 118 | 0.232 118 | 0.548 114 | 0.523 117 | 0.252 116 | |
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space. | ||||||||||||||||||||||
PointCNN with RGB | 0.458 107 | 0.577 103 | 0.611 107 | 0.356 117 | 0.321 114 | 0.715 99 | 0.299 106 | 0.376 111 | 0.328 113 | 0.319 108 | 0.944 72 | 0.285 107 | 0.164 98 | 0.216 115 | 0.229 110 | 0.484 102 | 0.545 109 | 0.456 104 | 0.755 98 | 0.709 102 | 0.475 105 | |
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018 | ||||||||||||||||||||||
PCNN | 0.498 104 | 0.559 104 | 0.644 102 | 0.560 105 | 0.420 105 | 0.711 100 | 0.229 112 | 0.414 107 | 0.436 102 | 0.352 106 | 0.941 78 | 0.324 103 | 0.155 101 | 0.238 112 | 0.387 104 | 0.493 100 | 0.529 111 | 0.509 92 | 0.813 92 | 0.751 94 | 0.504 99 | |
3DMV, FTSDF | 0.501 103 | 0.558 105 | 0.608 109 | 0.424 115 | 0.478 98 | 0.690 101 | 0.246 110 | 0.586 95 | 0.468 94 | 0.450 90 | 0.911 102 | 0.394 91 | 0.160 100 | 0.438 96 | 0.212 112 | 0.432 107 | 0.541 110 | 0.475 101 | 0.742 100 | 0.727 99 | 0.477 104 | |
MVF-GNN | 0.658 63 | 0.558 105 | 0.751 61 | 0.655 88 | 0.690 41 | 0.722 97 | 0.453 62 | 0.867 21 | 0.579 62 | 0.576 55 | 0.893 108 | 0.523 41 | 0.293 37 | 0.733 33 | 0.571 86 | 0.692 50 | 0.659 92 | 0.606 53 | 0.875 66 | 0.804 64 | 0.668 46 | |
PNET2 | 0.442 110 | 0.548 107 | 0.548 112 | 0.597 102 | 0.363 110 | 0.628 111 | 0.300 104 | 0.292 112 | 0.374 108 | 0.307 109 | 0.881 109 | 0.268 110 | 0.186 90 | 0.238 112 | 0.204 114 | 0.407 109 | 0.506 115 | 0.449 105 | 0.667 108 | 0.620 112 | 0.462 107 | |
3DWSSS | 0.425 113 | 0.525 108 | 0.647 100 | 0.522 106 | 0.324 113 | 0.488 117 | 0.077 118 | 0.712 76 | 0.353 110 | 0.401 98 | 0.636 118 | 0.281 108 | 0.176 93 | 0.340 105 | 0.565 87 | 0.175 118 | 0.551 108 | 0.398 112 | 0.370 118 | 0.602 113 | 0.361 111 | |
SurfaceConvPF | 0.442 110 | 0.505 109 | 0.622 106 | 0.380 116 | 0.342 112 | 0.654 105 | 0.227 113 | 0.397 109 | 0.367 109 | 0.276 112 | 0.924 96 | 0.240 112 | 0.198 86 | 0.359 104 | 0.262 108 | 0.366 110 | 0.581 102 | 0.435 109 | 0.640 109 | 0.668 107 | 0.398 108 | |
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames. | ||||||||||||||||||||||
GMLPs | 0.538 99 | 0.495 110 | 0.693 87 | 0.647 92 | 0.471 99 | 0.793 76 | 0.300 104 | 0.477 106 | 0.505 84 | 0.358 104 | 0.903 106 | 0.327 102 | 0.081 111 | 0.472 93 | 0.529 91 | 0.448 106 | 0.710 72 | 0.509 92 | 0.746 99 | 0.737 97 | 0.554 89 | |
PanopticFusion-label | 0.529 100 | 0.491 111 | 0.688 91 | 0.604 100 | 0.386 106 | 0.632 109 | 0.225 114 | 0.705 78 | 0.434 103 | 0.293 110 | 0.815 112 | 0.348 100 | 0.241 68 | 0.499 88 | 0.669 74 | 0.507 99 | 0.649 94 | 0.442 108 | 0.796 93 | 0.602 113 | 0.561 85 | |
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear) | ||||||||||||||||||||||
3DMV | 0.484 106 | 0.484 112 | 0.538 113 | 0.643 95 | 0.424 104 | 0.606 113 | 0.310 102 | 0.574 98 | 0.433 104 | 0.378 100 | 0.796 114 | 0.301 105 | 0.214 78 | 0.537 79 | 0.208 113 | 0.472 105 | 0.507 114 | 0.413 111 | 0.693 105 | 0.602 113 | 0.539 91 | |
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18 | ||||||||||||||||||||||
DGCNN_reproduce | 0.446 109 | 0.474 113 | 0.623 105 | 0.463 111 | 0.366 109 | 0.651 106 | 0.310 102 | 0.389 110 | 0.349 111 | 0.330 107 | 0.937 83 | 0.271 109 | 0.126 106 | 0.285 108 | 0.224 111 | 0.350 114 | 0.577 103 | 0.445 107 | 0.625 110 | 0.723 100 | 0.394 109 | |
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019 | ||||||||||||||||||||||
SPLAT Net | 0.393 114 | 0.472 114 | 0.511 114 | 0.606 99 | 0.311 115 | 0.656 104 | 0.245 111 | 0.405 108 | 0.328 113 | 0.197 116 | 0.927 95 | 0.227 114 | 0.000 119 | 0.001 119 | 0.249 109 | 0.271 117 | 0.510 112 | 0.383 114 | 0.593 113 | 0.699 104 | 0.267 115 | |
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018 | ||||||||||||||||||||||
Tangent Convolutions | 0.438 112 | 0.437 115 | 0.646 101 | 0.474 110 | 0.369 108 | 0.645 107 | 0.353 98 | 0.258 114 | 0.282 115 | 0.279 111 | 0.918 101 | 0.298 106 | 0.147 105 | 0.283 109 | 0.294 107 | 0.487 101 | 0.562 106 | 0.427 110 | 0.619 111 | 0.633 111 | 0.352 112 | |
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018 | ||||||||||||||||||||||
SSC-UNet | 0.308 117 | 0.353 116 | 0.290 118 | 0.278 118 | 0.166 118 | 0.553 115 | 0.169 116 | 0.286 113 | 0.147 118 | 0.148 118 | 0.908 103 | 0.182 117 | 0.064 113 | 0.023 118 | 0.018 119 | 0.354 113 | 0.363 116 | 0.345 116 | 0.546 116 | 0.685 105 | 0.278 114 | |
ScanNet+FTSDF | 0.383 115 | 0.297 117 | 0.491 115 | 0.432 114 | 0.358 111 | 0.612 112 | 0.274 108 | 0.116 116 | 0.411 106 | 0.265 113 | 0.904 105 | 0.229 113 | 0.079 112 | 0.250 110 | 0.185 115 | 0.320 115 | 0.510 112 | 0.385 113 | 0.548 114 | 0.597 116 | 0.394 109 | |
ScanNet | 0.306 118 | 0.203 118 | 0.366 117 | 0.501 107 | 0.311 115 | 0.524 116 | 0.211 115 | 0.002 119 | 0.342 112 | 0.189 117 | 0.786 115 | 0.145 118 | 0.102 108 | 0.245 111 | 0.152 116 | 0.318 116 | 0.348 117 | 0.300 117 | 0.460 117 | 0.437 118 | 0.182 118 | |
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17 | ||||||||||||||||||||||
ERROR | 0.054 119 | 0.000 119 | 0.041 119 | 0.172 119 | 0.030 119 | 0.062 119 | 0.001 119 | 0.035 118 | 0.004 119 | 0.051 119 | 0.143 119 | 0.019 119 | 0.003 118 | 0.041 117 | 0.050 118 | 0.003 119 | 0.054 119 | 0.018 119 | 0.005 119 | 0.264 119 | 0.082 119 | |