The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 330.766 180.926 60.767 200.797 280.644 380.942 130.876 190.722 31
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
ODINpermissive0.744 290.658 930.752 640.870 30.714 400.843 330.569 110.919 50.703 80.622 400.949 590.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 390.725 28
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
IPCA0.731 370.890 170.837 40.864 40.726 370.873 50.530 300.824 420.489 920.647 240.978 60.609 50.336 190.624 550.733 640.758 230.776 430.570 700.949 90.877 160.728 24
MSP0.748 240.623 1000.804 280.859 50.745 310.824 540.501 420.912 80.690 130.685 100.956 300.567 250.320 270.768 170.918 70.720 390.802 200.676 260.921 330.881 120.779 9
VMNetpermissive0.746 260.870 210.838 30.858 60.729 360.850 240.501 420.874 200.587 590.658 210.956 300.564 270.299 350.765 190.900 140.716 420.812 150.631 440.939 160.858 330.709 37
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 60.776 90.837 390.548 200.896 150.649 310.675 150.962 170.586 170.335 210.771 140.802 540.770 190.787 380.691 170.936 200.880 130.761 13
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. arxiv
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
online3d0.727 380.715 830.777 480.854 80.748 290.858 130.497 470.872 210.572 650.639 320.957 280.523 430.297 370.750 300.803 530.744 280.810 160.587 660.938 180.871 250.719 32
RPN0.736 350.776 510.790 390.851 110.754 230.854 180.491 520.866 240.596 560.686 90.955 340.536 370.342 160.624 550.869 260.787 110.802 200.628 450.927 270.875 200.704 39
PTv3 ScanNet0.794 30.941 30.813 210.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 360.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OctFormerpermissive0.766 90.925 70.808 260.849 130.786 50.846 300.566 120.876 190.690 130.674 160.960 190.576 220.226 720.753 270.904 110.777 160.815 90.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
EQ-Net0.743 310.620 1010.799 330.849 130.730 350.822 560.493 500.897 140.664 230.681 120.955 340.562 290.378 40.760 210.903 120.738 300.801 240.673 300.907 430.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
Virtual MVFusion0.746 260.771 550.819 140.848 150.702 430.865 100.397 900.899 130.699 90.664 200.948 620.588 150.330 230.746 320.851 390.764 210.796 290.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DTC0.757 150.843 290.820 120.847 160.791 20.862 110.511 380.870 220.707 60.652 230.954 400.604 80.279 480.760 210.942 30.734 320.766 500.701 130.884 610.874 220.736 20
SparseConvNet0.725 390.647 960.821 110.846 170.721 380.869 60.533 270.754 630.603 520.614 420.955 340.572 240.325 250.710 380.870 250.724 370.823 40.628 450.934 220.865 290.683 45
StratifiedFormerpermissive0.747 250.901 150.803 290.845 180.757 210.846 300.512 370.825 410.696 110.645 250.956 300.576 220.262 620.744 330.861 290.742 290.770 480.705 110.899 510.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 320.711 40.640 310.958 230.592 110.217 780.762 200.888 200.758 230.813 130.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 380.685 170.714 40.979 10.594 100.310 300.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
LSK3DNetpermissive0.755 170.899 160.823 80.843 200.764 160.838 380.584 20.845 330.717 20.638 330.956 300.580 210.229 710.640 480.900 140.750 260.813 130.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
DiffSegNet0.758 140.725 780.789 410.843 200.762 170.856 150.562 140.920 40.657 290.658 210.958 230.589 140.337 180.782 60.879 240.787 110.779 410.678 220.926 290.880 130.799 5
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 300.709 50.643 270.958 230.587 160.295 380.753 270.884 230.758 230.815 90.725 50.927 270.867 270.743 19
OccuSeg+Semantic0.764 110.758 610.796 340.839 240.746 300.907 10.562 140.850 290.680 190.672 170.978 60.610 40.335 210.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 26
DiffSeg3D20.745 280.725 780.814 200.837 250.751 260.831 460.514 360.896 150.674 200.684 110.960 190.564 270.303 340.773 120.820 480.713 450.798 270.690 190.923 310.875 200.757 14
Swin3Dpermissive0.779 60.861 230.818 160.836 260.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 510.805 190.708 100.916 390.898 50.801 4
ConDaFormer0.755 170.927 60.822 100.836 260.801 10.849 250.516 350.864 260.651 300.680 130.958 230.584 190.282 450.759 230.855 350.728 340.802 200.678 220.880 660.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PNE0.755 170.786 450.835 50.834 280.758 190.849 250.570 100.836 370.648 320.668 190.978 60.581 200.367 70.683 390.856 330.804 80.801 240.678 220.961 60.889 70.716 35
P. Hermosilla: Point Neighborhood Embeddings.
PonderV20.785 40.978 10.800 300.833 290.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 350.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
MinkowskiNetpermissive0.736 350.859 250.818 160.832 300.709 410.840 350.521 330.853 280.660 260.643 270.951 510.544 340.286 430.731 350.893 180.675 600.772 450.683 210.874 720.852 410.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 310.751 260.854 180.540 250.903 110.630 390.672 170.963 160.565 260.357 100.788 50.900 140.737 310.802 200.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
JSENetpermissive0.699 480.881 200.762 560.821 320.667 510.800 760.522 320.792 540.613 440.607 470.935 900.492 520.205 840.576 670.853 370.691 540.758 580.652 350.872 750.828 520.649 54
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
PointMetaBase0.714 430.835 310.785 430.821 320.684 470.846 300.531 290.865 250.614 430.596 540.953 440.500 500.246 670.674 400.888 200.692 530.764 520.624 470.849 870.844 480.675 47
PointTransformer++0.725 390.727 760.811 240.819 340.765 150.841 340.502 410.814 470.621 420.623 390.955 340.556 310.284 440.620 570.866 270.781 140.757 600.648 360.932 250.862 300.709 37
SAT0.742 320.860 240.765 550.819 340.769 140.848 270.533 270.829 390.663 240.631 360.955 340.586 170.274 510.753 270.896 170.729 330.760 560.666 330.921 330.855 370.733 22
Feature-Geometry Netpermissive0.685 530.866 220.748 660.819 340.645 600.794 790.450 680.802 510.587 590.604 480.945 700.464 640.201 870.554 760.840 420.723 380.732 710.602 570.907 430.822 570.603 72
RFCR0.702 460.889 180.745 690.813 370.672 500.818 630.493 500.815 460.623 400.610 440.947 640.470 620.249 660.594 620.848 400.705 480.779 410.646 370.892 560.823 550.611 65
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
INS-Conv-semantic0.717 420.751 640.759 580.812 380.704 420.868 70.537 260.842 340.609 480.608 460.953 440.534 390.293 390.616 580.864 280.719 410.793 330.640 400.933 230.845 470.663 50
BPNetcopyleft0.749 220.909 120.818 160.811 390.752 240.839 370.485 530.842 340.673 210.644 260.957 280.528 420.305 320.773 120.859 300.788 100.818 80.693 160.916 390.856 350.723 30
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MatchingNet0.724 410.812 400.812 220.810 400.735 340.834 430.495 490.860 270.572 650.602 500.954 400.512 470.280 470.757 240.845 410.725 360.780 400.606 550.937 190.851 420.700 41
TTT-KD0.773 70.646 970.818 160.809 410.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 190.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
contrastBoundarypermissive0.705 440.769 580.775 490.809 410.687 460.820 590.439 780.812 480.661 250.591 560.945 700.515 460.171 970.633 520.856 330.720 390.796 290.668 320.889 580.847 440.689 43
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
LRPNet0.742 320.816 380.806 270.807 430.752 240.828 500.575 80.839 360.699 90.637 340.954 400.520 450.320 270.755 260.834 430.760 220.772 450.676 260.915 410.862 300.717 33
PointConvFormer0.749 220.793 430.790 390.807 430.750 280.856 150.524 310.881 180.588 580.642 300.977 100.591 120.274 510.781 70.929 50.804 80.796 290.642 390.947 100.885 100.715 36
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
DCM-Net0.658 660.778 490.702 830.806 450.619 670.813 690.468 590.693 810.494 880.524 730.941 820.449 740.298 360.510 870.821 470.675 600.727 730.568 730.826 920.803 670.637 59
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
LargeKernel3D0.739 340.909 120.820 120.806 450.740 320.852 220.545 210.826 400.594 570.643 270.955 340.541 350.263 610.723 370.858 320.775 180.767 490.678 220.933 230.848 430.694 42
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
DMF-Net0.752 200.906 140.793 380.802 470.689 450.825 520.556 160.867 230.681 180.602 500.960 190.555 320.365 80.779 80.859 300.747 270.795 320.717 80.917 380.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
3DSM_DMMF0.631 800.626 990.745 690.801 480.607 690.751 970.506 390.729 720.565 700.491 840.866 1140.434 770.197 900.595 610.630 840.709 460.705 810.560 760.875 700.740 990.491 103
Superpoint Network0.683 570.851 270.728 770.800 490.653 550.806 720.468 590.804 490.572 650.602 500.946 670.453 720.239 700.519 850.822 460.689 570.762 550.595 610.895 540.827 530.630 62
Feature_GeometricNetpermissive0.690 510.884 190.754 620.795 500.647 580.818 630.422 820.802 510.612 450.604 480.945 700.462 650.189 920.563 730.853 370.726 350.765 510.632 430.904 450.821 580.606 69
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
dtc_net0.625 860.703 860.751 650.794 510.535 910.848 270.480 540.676 850.528 790.469 890.944 760.454 690.004 1190.464 960.636 830.704 490.758 580.548 850.924 300.787 830.492 102
ClickSeg_Semantic0.703 450.774 530.800 300.793 520.760 180.847 290.471 570.802 510.463 990.634 350.968 140.491 530.271 550.726 360.910 90.706 470.815 90.551 820.878 670.833 490.570 82
PicassoNet-IIpermissive0.692 500.732 720.772 500.786 530.677 490.866 90.517 340.848 300.509 850.626 370.952 490.536 370.225 740.545 800.704 710.689 570.810 160.564 750.903 470.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
PointContrast_LA_SEM0.683 570.757 620.784 440.786 530.639 620.824 540.408 850.775 560.604 510.541 650.934 940.532 400.269 570.552 770.777 570.645 760.793 330.640 400.913 420.824 540.671 48
KP-FCNN0.684 540.847 280.758 600.784 550.647 580.814 660.473 560.772 570.605 500.594 550.935 900.450 730.181 950.587 630.805 520.690 550.785 390.614 510.882 630.819 590.632 61
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VI-PointConv0.676 590.770 570.754 620.783 560.621 660.814 660.552 180.758 610.571 680.557 610.954 400.529 410.268 590.530 830.682 750.675 600.719 740.603 560.888 590.833 490.665 49
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
DGNet0.684 540.712 840.784 440.782 570.658 520.835 420.499 460.823 430.641 340.597 530.950 550.487 550.281 460.575 680.619 850.647 730.764 520.620 500.871 780.846 460.688 44
VACNN++0.684 540.728 750.757 610.776 580.690 440.804 740.464 620.816 440.577 640.587 570.945 700.508 490.276 500.671 410.710 690.663 650.750 640.589 640.881 640.832 510.653 53
DVVNet0.562 1000.648 950.700 850.770 590.586 780.687 1050.333 1040.650 890.514 840.475 880.906 1080.359 990.223 760.340 1070.442 1020.422 1110.668 940.501 980.708 1060.779 860.534 95
SALANet0.670 610.816 380.770 530.768 600.652 560.807 710.451 650.747 650.659 280.545 640.924 1000.473 610.149 1070.571 700.811 510.635 800.746 650.623 480.892 560.794 740.570 82
Retro-FPN0.744 290.842 300.800 300.767 610.740 320.836 410.541 230.914 70.672 220.626 370.958 230.552 330.272 530.777 90.886 220.696 520.801 240.674 290.941 140.858 330.717 33
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
FusionAwareConv0.630 830.604 1040.741 730.766 620.590 750.747 980.501 420.734 700.503 870.527 710.919 1040.454 690.323 260.550 790.420 1030.678 590.688 870.544 860.896 530.795 730.627 63
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
ROSMRF3D0.673 600.789 440.748 660.763 630.635 640.814 660.407 870.747 650.581 630.573 580.950 550.484 560.271 550.607 590.754 600.649 700.774 440.596 590.883 620.823 550.606 69
SIConv0.625 860.830 330.694 890.757 640.563 850.772 910.448 690.647 910.520 810.509 780.949 590.431 800.191 910.496 910.614 860.647 730.672 930.535 930.876 690.783 850.571 81
FusionNet0.688 520.704 850.741 730.754 650.656 530.829 480.501 420.741 680.609 480.548 630.950 550.522 440.371 50.633 520.756 590.715 430.771 470.623 480.861 830.814 610.658 51
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
SConv0.636 760.830 330.697 870.752 660.572 830.780 870.445 720.716 740.529 780.530 700.951 510.446 760.170 980.507 890.666 800.636 790.682 890.541 890.886 600.799 690.594 76
PointASNLpermissive0.666 630.703 860.781 460.751 670.655 540.830 470.471 570.769 580.474 950.537 670.951 510.475 600.279 480.635 500.698 740.675 600.751 620.553 810.816 940.806 650.703 40
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
One Thing One Click0.701 470.825 350.796 340.723 680.716 390.832 450.433 800.816 440.634 370.609 450.969 120.418 880.344 140.559 740.833 440.715 430.808 180.560 760.902 480.847 440.680 46
PPCNN++permissive0.663 650.746 650.708 800.722 690.638 630.820 590.451 650.566 1010.599 540.541 650.950 550.510 480.313 290.648 460.819 490.616 850.682 890.590 630.869 790.810 640.656 52
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
PointConv-SFPN0.641 700.776 510.703 820.721 700.557 870.826 510.451 650.672 860.563 720.483 850.943 790.425 850.162 1020.644 470.726 650.659 670.709 780.572 690.875 700.786 840.559 88
DenSeR0.628 840.800 410.625 1060.719 710.545 900.806 720.445 720.597 960.448 1020.519 770.938 860.481 570.328 240.489 930.499 980.657 680.759 570.592 620.881 640.797 720.634 60
Supervoxel-CNN0.635 770.656 940.711 790.719 710.613 680.757 960.444 750.765 590.534 770.566 590.928 980.478 590.272 530.636 490.531 930.664 640.645 990.508 970.864 820.792 790.611 65
PointSPNet0.637 750.734 710.692 910.714 730.576 810.797 780.446 700.743 670.598 550.437 970.942 800.403 910.150 1060.626 540.800 550.649 700.697 830.557 790.846 880.777 880.563 86
FPConvpermissive0.639 730.785 460.760 570.713 740.603 700.798 770.392 930.534 1060.603 520.524 730.948 620.457 670.250 650.538 810.723 670.598 900.696 840.614 510.872 750.799 690.567 85
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
SegGroup_sempermissive0.627 850.818 370.747 680.701 750.602 710.764 930.385 970.629 930.490 900.508 790.931 970.409 900.201 870.564 720.725 660.618 830.692 850.539 900.873 730.794 740.548 92
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PointConvpermissive0.666 630.781 480.759 580.699 760.644 610.822 560.475 550.779 550.564 710.504 820.953 440.428 820.203 860.586 650.754 600.661 660.753 610.588 650.902 480.813 630.642 57
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
RandLA-Netpermissive0.645 690.778 490.731 760.699 760.577 800.829 480.446 700.736 690.477 940.523 750.945 700.454 690.269 570.484 940.749 630.618 830.738 670.599 580.827 910.792 790.621 64
wsss-transformer0.600 920.634 980.743 710.697 780.601 720.781 850.437 790.585 990.493 890.446 940.933 950.394 930.011 1180.654 440.661 820.603 870.733 700.526 940.832 900.761 940.480 105
PointMRNet0.640 720.717 820.701 840.692 790.576 810.801 750.467 610.716 740.563 720.459 920.953 440.429 810.169 990.581 660.854 360.605 860.710 760.550 830.894 550.793 760.575 80
Pointnet++ & Featurepermissive0.557 1010.735 700.661 1000.686 800.491 980.744 990.392 930.539 1040.451 1010.375 1050.946 670.376 970.205 840.403 1030.356 1070.553 990.643 1000.497 990.824 930.756 950.515 98
CCRFNet0.589 950.766 590.659 1010.683 810.470 1020.740 1000.387 960.620 950.490 900.476 870.922 1020.355 1010.245 680.511 860.511 960.571 970.643 1000.493 1010.872 750.762 930.600 73
ROSMRF0.580 960.772 540.707 810.681 820.563 850.764 930.362 1000.515 1070.465 980.465 910.936 890.427 840.207 820.438 980.577 890.536 1000.675 920.486 1020.723 1050.779 860.524 97
PointMTL0.632 790.731 730.688 940.675 830.591 740.784 840.444 750.565 1020.610 460.492 830.949 590.456 680.254 640.587 630.706 700.599 890.665 950.612 540.868 800.791 820.579 79
PointNet2-SFPN0.631 800.771 550.692 910.672 840.524 930.837 390.440 770.706 790.538 760.446 940.944 760.421 870.219 770.552 770.751 620.591 920.737 680.543 880.901 500.768 910.557 89
APCF-Net0.631 800.742 680.687 960.672 840.557 870.792 820.408 850.665 880.545 750.508 790.952 490.428 820.186 930.634 510.702 720.620 820.706 800.555 800.873 730.798 710.581 78
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
MVPNetpermissive0.641 700.831 320.715 780.671 860.590 750.781 850.394 910.679 830.642 330.553 620.937 870.462 650.256 630.649 450.406 1040.626 810.691 860.666 330.877 680.792 790.608 68
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
TextureNetpermissive0.566 990.672 920.664 990.671 860.494 970.719 1010.445 720.678 840.411 1080.396 1020.935 900.356 1000.225 740.412 1020.535 920.565 980.636 1030.464 1050.794 970.680 1090.568 84
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
joint point-basedpermissive0.634 780.614 1020.778 470.667 880.633 650.825 520.420 830.804 490.467 970.561 600.951 510.494 510.291 400.566 710.458 990.579 960.764 520.559 780.838 890.814 610.598 74
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
SAFNet-segpermissive0.654 680.752 630.734 750.664 890.583 790.815 650.399 890.754 630.639 350.535 690.942 800.470 620.309 310.665 420.539 910.650 690.708 790.635 420.857 850.793 760.642 57
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
SQN_0.1%0.569 980.676 900.696 880.657 900.497 960.779 880.424 810.548 1030.515 830.376 1040.902 1110.422 860.357 100.379 1050.456 1000.596 910.659 960.544 860.685 1080.665 1120.556 90
One-Thing-One-Click0.693 490.743 670.794 360.655 910.684 470.822 560.497 470.719 730.622 410.617 410.977 100.447 750.339 170.750 300.664 810.703 500.790 360.596 590.946 120.855 370.647 55
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
HPGCNN0.656 670.698 880.743 710.650 920.564 840.820 590.505 400.758 610.631 380.479 860.945 700.480 580.226 720.572 690.774 580.690 550.735 690.614 510.853 860.776 890.597 75
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
AttAN0.609 910.760 600.667 980.649 930.521 940.793 800.457 640.648 900.528 790.434 990.947 640.401 920.153 1050.454 970.721 680.648 720.717 750.536 920.904 450.765 920.485 104
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
HPEIN0.618 890.729 740.668 970.647 940.597 730.766 920.414 840.680 820.520 810.525 720.946 670.432 780.215 790.493 920.599 870.638 780.617 1040.570 700.897 520.806 650.605 71
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
GMLPs0.538 1020.495 1120.693 900.647 940.471 1010.793 800.300 1070.477 1080.505 860.358 1060.903 1100.327 1040.081 1130.472 950.529 940.448 1090.710 760.509 950.746 1010.737 1000.554 91
3DMV0.484 1080.484 1140.538 1160.643 960.424 1060.606 1160.310 1050.574 1000.433 1060.378 1030.796 1170.301 1070.214 800.537 820.208 1150.472 1080.507 1160.413 1140.693 1070.602 1160.539 93
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PD-Net0.638 740.797 420.769 540.641 970.590 750.820 590.461 630.537 1050.637 360.536 680.947 640.388 950.206 830.656 430.668 790.647 730.732 710.585 670.868 800.793 760.473 108
LAP-D0.594 930.720 800.692 910.637 980.456 1030.773 900.391 950.730 710.587 590.445 960.940 840.381 960.288 410.434 1000.453 1010.591 920.649 970.581 680.777 980.749 980.610 67
Weakly-Openseg v30.625 860.924 80.787 420.620 990.555 890.811 700.393 920.666 870.382 1100.520 760.953 440.250 1140.208 810.604 600.670 770.644 770.742 660.538 910.919 360.803 670.513 100
subcloud_weak0.516 1040.676 900.591 1130.609 1000.442 1040.774 890.335 1030.597 960.422 1070.357 1070.932 960.341 1030.094 1120.298 1090.528 950.473 1070.676 910.495 1000.602 1140.721 1040.349 116
SPLAT Netcopyleft0.393 1160.472 1160.511 1170.606 1010.311 1170.656 1070.245 1150.405 1100.328 1160.197 1190.927 990.227 1170.000 1210.001 1220.249 1110.271 1190.510 1140.383 1170.593 1150.699 1070.267 118
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
PanopticFusion-label0.529 1030.491 1130.688 940.604 1020.386 1080.632 1120.225 1180.705 800.434 1050.293 1120.815 1160.348 1020.241 690.499 900.669 780.507 1020.649 970.442 1110.796 960.602 1160.561 87
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
DPC0.592 940.720 800.700 850.602 1030.480 990.762 950.380 980.713 770.585 620.437 970.940 840.369 980.288 410.434 1000.509 970.590 940.639 1020.567 740.772 990.755 960.592 77
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
PNET20.442 1120.548 1090.548 1150.597 1040.363 1120.628 1140.300 1070.292 1150.374 1110.307 1110.881 1120.268 1120.186 930.238 1140.204 1160.407 1120.506 1170.449 1080.667 1100.620 1150.462 110
Online SegFusion0.515 1050.607 1030.644 1040.579 1050.434 1050.630 1130.353 1010.628 940.440 1030.410 1000.762 1190.307 1060.167 1000.520 840.403 1050.516 1010.565 1070.447 1090.678 1090.701 1060.514 99
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
FCPNpermissive0.447 1100.679 890.604 1120.578 1060.380 1090.682 1060.291 1100.106 1200.483 930.258 1180.920 1030.258 1130.025 1170.231 1160.325 1080.480 1060.560 1090.463 1060.725 1040.666 1110.231 120
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
PCNN0.498 1070.559 1070.644 1040.560 1070.420 1070.711 1030.229 1160.414 1090.436 1040.352 1080.941 820.324 1050.155 1040.238 1140.387 1060.493 1030.529 1130.509 950.813 950.751 970.504 101
3DWSSS0.425 1150.525 1100.647 1020.522 1080.324 1150.488 1200.077 1210.712 780.353 1130.401 1010.636 1210.281 1100.176 960.340 1070.565 900.175 1200.551 1100.398 1150.370 1210.602 1160.361 114
ScanNetpermissive0.306 1210.203 1200.366 1200.501 1090.311 1170.524 1190.211 1190.002 1220.342 1150.189 1200.786 1180.145 1200.102 1110.245 1130.152 1180.318 1180.348 1200.300 1200.460 1190.437 1210.182 121
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
GrowSP++0.323 1190.114 1210.589 1140.499 1100.147 1210.555 1170.290 1110.336 1140.290 1180.262 1160.865 1150.102 1210.000 1210.037 1200.000 1220.000 1220.462 1180.381 1180.389 1200.664 1130.473 108
O3DSeg0.668 620.822 360.771 520.496 1110.651 570.833 440.541 230.761 600.555 740.611 430.966 150.489 540.370 60.388 1040.580 880.776 170.751 620.570 700.956 70.817 600.646 56
SPH3D-GCNpermissive0.610 900.858 260.772 500.489 1120.532 920.792 820.404 880.643 920.570 690.507 810.935 900.414 890.046 1160.510 870.702 720.602 880.705 810.549 840.859 840.773 900.534 95
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
Tangent Convolutionspermissive0.438 1140.437 1170.646 1030.474 1130.369 1100.645 1100.353 1010.258 1170.282 1190.279 1130.918 1050.298 1080.147 1080.283 1110.294 1090.487 1040.562 1080.427 1130.619 1130.633 1140.352 115
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
DGCNN_reproducecopyleft0.446 1110.474 1150.623 1070.463 1140.366 1110.651 1090.310 1050.389 1120.349 1140.330 1090.937 870.271 1110.126 1090.285 1100.224 1130.350 1160.577 1060.445 1100.625 1120.723 1030.394 112
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PointNet++permissive0.339 1180.584 1050.478 1190.458 1150.256 1190.360 1210.250 1130.247 1180.278 1200.261 1170.677 1200.183 1180.117 1100.212 1180.145 1190.364 1140.346 1210.232 1210.548 1160.523 1200.252 119
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SD-DETR0.576 970.746 650.609 1100.445 1160.517 950.643 1110.366 990.714 760.456 1000.468 900.870 1130.432 780.264 600.558 750.674 760.586 950.688 870.482 1030.739 1030.733 1010.537 94
ScanNet+FTSDF0.383 1170.297 1190.491 1180.432 1170.358 1130.612 1150.274 1120.116 1190.411 1080.265 1150.904 1090.229 1160.079 1140.250 1120.185 1170.320 1170.510 1140.385 1160.548 1160.597 1190.394 112
3DMV, FTSDF0.501 1060.558 1080.608 1110.424 1180.478 1000.690 1040.246 1140.586 980.468 960.450 930.911 1060.394 930.160 1030.438 980.212 1140.432 1100.541 1120.475 1040.742 1020.727 1020.477 106
SurfaceConvPF0.442 1120.505 1110.622 1080.380 1190.342 1140.654 1080.227 1170.397 1110.367 1120.276 1140.924 1000.240 1150.198 890.359 1060.262 1100.366 1130.581 1050.435 1120.640 1110.668 1100.398 111
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
PointCNN with RGBpermissive0.458 1090.577 1060.611 1090.356 1200.321 1160.715 1020.299 1090.376 1130.328 1160.319 1100.944 760.285 1090.164 1010.216 1170.229 1120.484 1050.545 1110.456 1070.755 1000.709 1050.475 107
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
SSC-UNetpermissive0.308 1200.353 1180.290 1210.278 1210.166 1200.553 1180.169 1200.286 1160.147 1210.148 1210.908 1070.182 1190.064 1150.023 1210.018 1210.354 1150.363 1190.345 1190.546 1180.685 1080.278 117
ERROR0.054 1220.000 1220.041 1220.172 1220.030 1220.062 1230.001 1220.035 1210.004 1220.051 1220.143 1220.019 1220.003 1200.041 1190.050 1200.003 1210.054 1220.018 1220.005 1230.264 1220.082 122
MVF-GNN0.014 1230.000 1220.000 1230.000 1230.007 1230.086 1220.000 1230.000 1230.001 1230.000 1230.029 1230.001 1230.000 1210.000 1230.000 1220.000 1220.000 1230.018 1220.015 1220.115 1230.000 123