The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3 ScanNet0.794 20.941 30.813 200.851 90.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 330.696 140.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 400.852 20.889 10.774 100.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 100.824 20.749 10.948 90.887 70.771 11
TTT-KD0.773 70.646 950.818 150.809 380.774 100.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 120.912 80.838 40.823 30.694 150.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
CU-Hybrid Net0.764 110.924 80.819 130.840 200.757 210.853 190.580 40.848 290.709 40.643 280.958 230.587 150.295 370.753 280.884 220.758 230.815 80.725 40.927 270.867 250.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 170.770 130.852 210.577 50.847 310.711 30.640 320.958 230.592 110.217 760.762 210.888 190.758 230.813 120.726 30.932 250.868 240.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
Swin3Dpermissive0.779 60.861 220.818 150.836 230.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 260.958 10.702 490.805 160.708 90.916 360.898 40.801 3
Mix3Dpermissive0.781 50.964 20.855 10.843 180.781 70.858 130.575 70.831 360.685 150.714 40.979 10.594 100.310 300.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
LRPNet0.742 310.816 370.806 270.807 400.752 240.828 480.575 70.839 340.699 70.637 330.954 380.520 430.320 270.755 270.834 420.760 220.772 430.676 260.915 380.862 290.717 31
PNE0.755 170.786 450.835 50.834 250.758 190.849 240.570 90.836 350.648 310.668 200.978 50.581 200.367 70.683 380.856 320.804 70.801 210.678 220.961 50.889 60.716 33
P. Hermosilla: Point Neighborhood Embeddings.
OctFormerpermissive0.766 90.925 70.808 260.849 110.786 50.846 290.566 100.876 190.690 110.674 160.960 190.576 210.226 700.753 280.904 110.777 160.815 80.722 60.923 310.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 120.840 340.564 110.900 110.686 140.677 140.961 170.537 350.348 120.769 160.903 120.785 140.815 80.676 260.939 160.880 130.772 10
OccuSeg+Semantic0.764 110.758 610.796 340.839 210.746 290.907 10.562 120.850 280.680 170.672 180.978 50.610 40.335 200.777 100.819 480.847 10.830 10.691 170.972 20.885 100.727 26
DiffSegNet0.758 140.725 780.789 410.843 180.762 170.856 140.562 120.920 40.657 280.658 220.958 230.589 130.337 170.782 60.879 230.787 120.779 390.678 220.926 290.880 130.799 4
DMF-Net0.752 190.906 130.793 380.802 440.689 430.825 500.556 140.867 220.681 160.602 480.960 190.555 310.365 80.779 90.859 290.747 260.795 290.717 70.917 350.856 340.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 130.856 140.555 150.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PointTransformerV20.752 190.742 680.809 250.872 20.758 190.860 120.552 160.891 170.610 450.687 80.960 190.559 290.304 330.766 190.926 60.767 200.797 250.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
VI-PointConv0.676 570.770 570.754 610.783 530.621 640.814 650.552 160.758 590.571 660.557 590.954 380.529 400.268 580.530 800.682 740.675 580.719 720.603 550.888 560.833 470.665 47
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 80.837 370.548 180.896 150.649 300.675 150.962 160.586 160.335 200.771 150.802 520.770 190.787 350.691 170.936 190.880 130.761 13
PonderV20.785 40.978 10.800 300.833 260.788 40.853 190.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 160.832 440.821 50.792 320.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
LargeKernel3D0.739 330.909 110.820 110.806 420.740 310.852 210.545 190.826 380.594 560.643 280.955 320.541 340.263 600.723 360.858 310.775 180.767 470.678 220.933 230.848 410.694 40
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
O3DSeg0.668 600.822 350.771 500.496 1090.651 550.833 420.541 210.761 580.555 720.611 410.966 140.489 520.370 60.388 1020.580 860.776 170.751 600.570 680.956 60.817 580.646 54
Retro-FPN0.744 280.842 290.800 300.767 580.740 310.836 390.541 210.914 60.672 210.626 360.958 230.552 320.272 520.777 100.886 210.696 500.801 210.674 290.941 140.858 320.717 31
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 280.751 260.854 170.540 230.903 100.630 380.672 180.963 150.565 250.357 90.788 50.900 140.737 290.802 170.685 200.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
INS-Conv-semantic0.717 400.751 640.759 570.812 350.704 400.868 80.537 240.842 320.609 470.608 440.953 430.534 380.293 380.616 560.864 270.719 390.793 300.640 390.933 230.845 450.663 48
SparseConvNet0.725 370.647 940.821 100.846 150.721 370.869 70.533 250.754 610.603 510.614 400.955 320.572 230.325 240.710 370.870 240.724 350.823 30.628 440.934 220.865 270.683 43
SAT0.742 310.860 230.765 530.819 310.769 150.848 260.533 250.829 370.663 230.631 350.955 320.586 160.274 500.753 280.896 160.729 310.760 540.666 320.921 330.855 360.733 22
PointMetaBase0.714 410.835 300.785 420.821 290.684 450.846 290.531 270.865 240.614 420.596 520.953 430.500 480.246 660.674 390.888 190.692 510.764 500.624 460.849 850.844 460.675 45
IPCA0.731 360.890 160.837 40.864 30.726 360.873 60.530 280.824 400.489 900.647 250.978 50.609 50.336 180.624 530.733 610.758 230.776 410.570 680.949 80.877 160.728 24
MVF-GNN0.743 290.731 730.810 240.726 650.775 90.843 320.528 290.897 130.679 180.674 160.954 380.583 190.322 260.782 60.720 670.802 90.785 360.707 100.935 200.863 280.745 16
PointConvFormer0.749 210.793 430.790 390.807 400.750 280.856 140.524 300.881 180.588 570.642 310.977 90.591 120.274 500.781 80.929 40.804 70.796 260.642 380.947 100.885 100.715 34
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
JSENetpermissive0.699 460.881 190.762 540.821 290.667 490.800 740.522 310.792 520.613 430.607 450.935 870.492 500.205 810.576 640.853 360.691 520.758 560.652 340.872 720.828 500.649 52
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
MinkowskiNetpermissive0.736 340.859 240.818 150.832 270.709 390.840 340.521 320.853 270.660 250.643 280.951 490.544 330.286 420.731 340.893 170.675 580.772 430.683 210.874 690.852 390.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
PicassoNet-IIpermissive0.692 480.732 720.772 480.786 500.677 470.866 90.517 330.848 290.509 830.626 360.952 470.536 360.225 720.545 770.704 700.689 550.810 140.564 730.903 440.854 380.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
ConDaFormer0.755 170.927 60.822 90.836 230.801 10.849 240.516 340.864 250.651 290.680 130.958 230.584 180.282 440.759 240.855 340.728 320.802 170.678 220.880 630.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
DiffSeg3D20.745 270.725 780.814 190.837 220.751 260.831 440.514 350.896 150.674 190.684 110.960 190.564 260.303 340.773 130.820 470.713 430.798 240.690 190.923 310.875 200.757 14
StratifiedFormerpermissive0.747 240.901 140.803 290.845 160.757 210.846 290.512 360.825 390.696 90.645 260.956 290.576 210.262 610.744 330.861 280.742 270.770 460.705 110.899 480.860 310.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
DTC0.757 150.843 280.820 110.847 140.791 20.862 110.511 370.870 210.707 50.652 240.954 380.604 80.279 470.760 220.942 20.734 300.766 480.701 130.884 580.874 220.736 20
3DSM_DMMF0.631 780.626 970.745 670.801 450.607 670.751 950.506 380.729 700.565 680.491 820.866 1120.434 750.197 870.595 580.630 820.709 440.705 790.560 740.875 670.740 970.491 101
HPGCNN0.656 650.698 870.743 690.650 900.564 820.820 570.505 390.758 590.631 370.479 840.945 670.480 560.226 700.572 660.774 550.690 530.735 670.614 500.853 840.776 860.597 73
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
PointTransformer++0.725 370.727 770.811 230.819 310.765 160.841 330.502 400.814 450.621 410.623 380.955 320.556 300.284 430.620 550.866 260.781 150.757 580.648 350.932 250.862 290.709 35
VMNetpermissive0.746 250.870 200.838 30.858 50.729 350.850 230.501 410.874 200.587 580.658 220.956 290.564 260.299 350.765 200.900 140.716 400.812 130.631 430.939 160.858 320.709 35
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
FusionAwareConv0.630 810.604 1020.741 710.766 590.590 730.747 960.501 410.734 680.503 850.527 700.919 1020.454 670.323 250.550 760.420 1010.678 570.688 850.544 840.896 500.795 700.627 61
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
MSP0.748 230.623 980.804 280.859 40.745 300.824 520.501 410.912 70.690 110.685 100.956 290.567 240.320 270.768 180.918 70.720 370.802 170.676 260.921 330.881 120.779 8
FusionNet0.688 500.704 840.741 710.754 620.656 510.829 460.501 410.741 660.609 470.548 610.950 530.522 420.371 50.633 500.756 560.715 410.771 450.623 470.861 800.814 590.658 49
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
DGNet0.684 520.712 830.784 430.782 540.658 500.835 400.499 450.823 410.641 330.597 510.950 530.487 530.281 450.575 650.619 830.647 710.764 500.620 490.871 750.846 440.688 42
One-Thing-One-Click0.693 470.743 670.794 360.655 890.684 450.822 540.497 460.719 710.622 400.617 390.977 90.447 730.339 160.750 310.664 790.703 480.790 330.596 580.946 120.855 360.647 53
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
MatchingNet0.724 390.812 390.812 210.810 370.735 330.834 410.495 470.860 260.572 640.602 480.954 380.512 450.280 460.757 250.845 400.725 340.780 380.606 540.937 180.851 400.700 39
RFCR0.702 440.889 170.745 670.813 340.672 480.818 620.493 480.815 440.623 390.610 420.947 610.470 600.249 650.594 590.848 390.705 460.779 390.646 360.892 530.823 530.611 63
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
EQ-Net0.743 290.620 990.799 330.849 110.730 340.822 540.493 480.897 130.664 220.681 120.955 320.562 280.378 40.760 220.903 120.738 280.801 210.673 300.907 400.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
RPN0.736 340.776 510.790 390.851 90.754 230.854 170.491 500.866 230.596 550.686 90.955 320.536 360.342 150.624 530.869 250.787 120.802 170.628 440.927 270.875 200.704 37
BPNetcopyleft0.749 210.909 110.818 150.811 360.752 240.839 360.485 510.842 320.673 200.644 270.957 280.528 410.305 320.773 130.859 290.788 110.818 70.693 160.916 360.856 340.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
dtc_net0.625 840.703 850.751 630.794 480.535 880.848 260.480 520.676 840.528 770.469 870.944 730.454 670.004 1170.464 940.636 810.704 470.758 560.548 830.924 300.787 800.492 100
PointConvpermissive0.666 610.781 480.759 570.699 740.644 590.822 540.475 530.779 530.564 690.504 800.953 430.428 800.203 830.586 620.754 570.661 640.753 590.588 640.902 450.813 610.642 55
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
KP-FCNN0.684 520.847 270.758 590.784 520.647 560.814 650.473 540.772 550.605 490.594 530.935 870.450 710.181 920.587 600.805 510.690 530.785 360.614 500.882 600.819 570.632 59
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
ClickSeg_Semantic0.703 430.774 530.800 300.793 490.760 180.847 280.471 550.802 490.463 970.634 340.968 130.491 510.271 540.726 350.910 90.706 450.815 80.551 800.878 640.833 470.570 80
PointASNLpermissive0.666 610.703 850.781 450.751 640.655 520.830 450.471 550.769 560.474 930.537 650.951 490.475 580.279 470.635 480.698 730.675 580.751 600.553 790.816 920.806 630.703 38
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
DCM-Net0.658 640.778 490.702 810.806 420.619 650.813 680.468 570.693 790.494 860.524 720.941 790.449 720.298 360.510 850.821 460.675 580.727 710.568 710.826 900.803 650.637 57
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
Superpoint Network0.683 550.851 260.728 750.800 460.653 530.806 700.468 570.804 470.572 640.602 480.946 640.453 700.239 690.519 830.822 450.689 550.762 530.595 600.895 510.827 510.630 60
PointMRNet0.640 700.717 820.701 820.692 770.576 790.801 730.467 590.716 720.563 700.459 900.953 430.429 790.169 970.581 630.854 350.605 830.710 740.550 810.894 520.793 730.575 78
VACNN++0.684 520.728 760.757 600.776 550.690 420.804 720.464 600.816 420.577 630.587 550.945 670.508 470.276 490.671 400.710 680.663 630.750 620.589 630.881 610.832 490.653 51
PD-Net0.638 720.797 420.769 520.641 950.590 730.820 570.461 610.537 1030.637 350.536 660.947 610.388 930.206 800.656 420.668 770.647 710.732 690.585 650.868 770.793 730.473 106
AttAN0.609 880.760 600.667 960.649 910.521 910.793 780.457 620.648 880.528 770.434 970.947 610.401 900.153 1030.454 950.721 660.648 700.717 730.536 890.904 420.765 900.485 102
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
SALANet0.670 590.816 370.770 510.768 570.652 540.807 690.451 630.747 630.659 270.545 620.924 980.473 590.149 1050.571 670.811 500.635 770.746 630.623 470.892 530.794 710.570 80
PointConv-SFPN0.641 680.776 510.703 800.721 680.557 850.826 490.451 630.672 850.563 700.483 830.943 760.425 830.162 1000.644 460.726 620.659 650.709 760.572 670.875 670.786 810.559 86
PPCNN++permissive0.663 630.746 650.708 780.722 670.638 610.820 570.451 630.566 990.599 530.541 630.950 530.510 460.313 290.648 450.819 480.616 820.682 870.590 620.869 760.810 620.656 50
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
Feature-Geometry Netpermissive0.685 510.866 210.748 640.819 310.645 580.794 770.450 660.802 490.587 580.604 460.945 670.464 620.201 840.554 730.840 410.723 360.732 690.602 560.907 400.822 550.603 70
SIConv0.625 840.830 320.694 870.757 610.563 830.772 890.448 670.647 890.520 790.509 760.949 570.431 780.191 880.496 890.614 840.647 710.672 910.535 900.876 660.783 820.571 79
PointSPNet0.637 730.734 710.692 890.714 710.576 790.797 760.446 680.743 650.598 540.437 950.942 770.403 890.150 1040.626 520.800 530.649 680.697 810.557 770.846 860.777 850.563 84
RandLA-Netpermissive0.645 670.778 490.731 740.699 740.577 780.829 460.446 680.736 670.477 920.523 740.945 670.454 670.269 560.484 920.749 600.618 800.738 640.599 570.827 890.792 760.621 62
TextureNetpermissive0.566 970.672 910.664 970.671 840.494 940.719 990.445 700.678 830.411 1060.396 1000.935 870.356 980.225 720.412 1000.535 900.565 960.636 1010.464 1030.794 950.680 1070.568 82
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
SConv0.636 740.830 320.697 850.752 630.572 810.780 850.445 700.716 720.529 760.530 680.951 490.446 740.170 960.507 870.666 780.636 760.682 870.541 870.886 570.799 660.594 74
DenSeR0.628 820.800 410.625 1040.719 690.545 870.806 700.445 700.597 940.448 1000.519 750.938 830.481 550.328 230.489 910.499 960.657 660.759 550.592 610.881 610.797 690.634 58
PointMTL0.632 770.731 730.688 920.675 810.591 720.784 820.444 730.565 1000.610 450.492 810.949 570.456 660.254 630.587 600.706 690.599 860.665 930.612 530.868 770.791 790.579 77
Supervoxel-CNN0.635 750.656 920.711 770.719 690.613 660.757 940.444 730.765 570.534 750.566 570.928 960.478 570.272 520.636 470.531 910.664 620.645 970.508 950.864 790.792 760.611 63
PointNet2-SFPN0.631 780.771 550.692 890.672 820.524 900.837 370.440 750.706 770.538 740.446 920.944 730.421 850.219 750.552 740.751 590.591 900.737 650.543 860.901 470.768 890.557 87
contrastBoundarypermissive0.705 420.769 580.775 470.809 380.687 440.820 570.439 760.812 460.661 240.591 540.945 670.515 440.171 950.633 500.856 320.720 370.796 260.668 310.889 550.847 420.689 41
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
wsss-transformer0.600 900.634 960.743 690.697 760.601 700.781 830.437 770.585 970.493 870.446 920.933 920.394 910.011 1160.654 430.661 800.603 840.733 680.526 910.832 880.761 920.480 103
One Thing One Click0.701 450.825 340.796 340.723 660.716 380.832 430.433 780.816 420.634 360.609 430.969 110.418 860.344 140.559 710.833 430.715 410.808 150.560 740.902 450.847 420.680 44
SQN_0.1%0.569 960.676 890.696 860.657 880.497 930.779 860.424 790.548 1010.515 810.376 1020.902 1090.422 840.357 90.379 1030.456 980.596 880.659 940.544 840.685 1060.665 1100.556 88
Feature_GeometricNetpermissive0.690 490.884 180.754 610.795 470.647 560.818 620.422 800.802 490.612 440.604 460.945 670.462 630.189 890.563 700.853 360.726 330.765 490.632 420.904 420.821 560.606 67
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
joint point-basedpermissive0.634 760.614 1000.778 460.667 860.633 630.825 500.420 810.804 470.467 950.561 580.951 490.494 490.291 390.566 680.458 970.579 940.764 500.559 760.838 870.814 590.598 72
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
HPEIN0.618 860.729 750.668 950.647 920.597 710.766 900.414 820.680 810.520 790.525 710.946 640.432 760.215 770.493 900.599 850.638 750.617 1020.570 680.897 490.806 630.605 69
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
APCF-Net0.631 780.742 680.687 940.672 820.557 850.792 800.408 830.665 860.545 730.508 770.952 470.428 800.186 900.634 490.702 710.620 790.706 780.555 780.873 700.798 680.581 76
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
PointContrast_LA_SEM0.683 550.757 620.784 430.786 500.639 600.824 520.408 830.775 540.604 500.541 630.934 910.532 390.269 560.552 740.777 540.645 740.793 300.640 390.913 390.824 520.671 46
ROSMRF3D0.673 580.789 440.748 640.763 600.635 620.814 650.407 850.747 630.581 620.573 560.950 530.484 540.271 540.607 570.754 570.649 680.774 420.596 580.883 590.823 530.606 67
SPH3D-GCNpermissive0.610 870.858 250.772 480.489 1100.532 890.792 800.404 860.643 900.570 670.507 790.935 870.414 870.046 1140.510 850.702 710.602 850.705 790.549 820.859 810.773 870.534 93
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
SAFNet-segpermissive0.654 660.752 630.734 730.664 870.583 770.815 640.399 870.754 610.639 340.535 670.942 770.470 600.309 310.665 410.539 890.650 670.708 770.635 410.857 830.793 730.642 55
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
Virtual MVFusion0.746 250.771 550.819 130.848 130.702 410.865 100.397 880.899 120.699 70.664 210.948 590.588 140.330 220.746 320.851 380.764 210.796 260.704 120.935 200.866 260.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
MVPNetpermissive0.641 680.831 310.715 760.671 840.590 730.781 830.394 890.679 820.642 320.553 600.937 840.462 630.256 620.649 440.406 1020.626 780.691 840.666 320.877 650.792 760.608 66
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
FPConvpermissive0.639 710.785 460.760 560.713 720.603 680.798 750.392 900.534 1040.603 510.524 720.948 590.457 650.250 640.538 780.723 650.598 870.696 820.614 500.872 720.799 660.567 83
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
Pointnet++ & Featurepermissive0.557 990.735 700.661 980.686 780.491 950.744 970.392 900.539 1020.451 990.375 1030.946 640.376 950.205 810.403 1010.356 1050.553 970.643 980.497 970.824 910.756 930.515 96
LAP-D0.594 910.720 800.692 890.637 960.456 1010.773 880.391 920.730 690.587 580.445 940.940 810.381 940.288 400.434 980.453 990.591 900.649 950.581 660.777 960.749 960.610 65
CCRFNet0.589 930.766 590.659 990.683 790.470 1000.740 980.387 930.620 930.490 880.476 850.922 1000.355 990.245 670.511 840.511 940.571 950.643 980.493 990.872 720.762 910.600 71
SegGroup_sempermissive0.627 830.818 360.747 660.701 730.602 690.764 910.385 940.629 910.490 880.508 770.931 950.409 880.201 840.564 690.725 630.618 800.692 830.539 880.873 700.794 710.548 90
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
DPC0.592 920.720 800.700 830.602 1010.480 960.762 930.380 950.713 750.585 610.437 950.940 810.369 960.288 400.434 980.509 950.590 920.639 1000.567 720.772 970.755 940.592 75
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
SD-DETR0.576 950.746 650.609 1080.445 1140.517 920.643 1090.366 960.714 740.456 980.468 880.870 1110.432 760.264 590.558 720.674 750.586 930.688 850.482 1010.739 1010.733 990.537 92
ROSMRF0.580 940.772 540.707 790.681 800.563 830.764 910.362 970.515 1050.465 960.465 890.936 860.427 820.207 790.438 960.577 870.536 980.675 900.486 1000.723 1030.779 830.524 95
Online SegFusion0.515 1030.607 1010.644 1020.579 1030.434 1030.630 1110.353 980.628 920.440 1010.410 980.762 1170.307 1040.167 980.520 820.403 1030.516 990.565 1050.447 1070.678 1070.701 1040.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
Tangent Convolutionspermissive0.438 1120.437 1150.646 1010.474 1110.369 1080.645 1080.353 980.258 1150.282 1170.279 1110.918 1030.298 1060.147 1060.283 1090.294 1070.487 1020.562 1060.427 1110.619 1110.633 1120.352 113
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
Weakly-Openseg v30.604 890.901 140.762 540.627 970.478 970.820 570.346 1000.689 800.353 1100.528 690.933 920.217 1150.172 940.530 800.725 630.593 890.737 650.515 920.858 820.772 880.515 96
subcloud_weak0.516 1020.676 890.591 1110.609 980.442 1020.774 870.335 1010.597 940.422 1050.357 1050.932 940.341 1010.094 1100.298 1070.528 930.473 1050.676 890.495 980.602 1120.721 1020.349 114
DVVNet0.562 980.648 930.700 830.770 560.586 760.687 1030.333 1020.650 870.514 820.475 860.906 1060.359 970.223 740.340 1050.442 1000.422 1090.668 920.501 960.708 1040.779 830.534 93
3DMV0.484 1060.484 1120.538 1140.643 940.424 1040.606 1140.310 1030.574 980.433 1040.378 1010.796 1150.301 1050.214 780.537 790.208 1130.472 1060.507 1140.413 1120.693 1050.602 1140.539 91
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
DGCNN_reproducecopyleft0.446 1090.474 1130.623 1050.463 1120.366 1090.651 1070.310 1030.389 1100.349 1120.330 1070.937 840.271 1090.126 1070.285 1080.224 1110.350 1140.577 1040.445 1080.625 1100.723 1010.394 110
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1100.548 1070.548 1130.597 1020.363 1100.628 1120.300 1050.292 1130.374 1080.307 1090.881 1100.268 1100.186 900.238 1120.204 1140.407 1100.506 1150.449 1060.667 1080.620 1130.462 108
GMLPs0.538 1000.495 1100.693 880.647 920.471 990.793 780.300 1050.477 1060.505 840.358 1040.903 1080.327 1020.081 1110.472 930.529 920.448 1070.710 740.509 930.746 990.737 980.554 89
PointCNN with RGBpermissive0.458 1070.577 1040.611 1070.356 1180.321 1140.715 1000.299 1070.376 1110.328 1140.319 1080.944 730.285 1070.164 990.216 1150.229 1100.484 1030.545 1090.456 1050.755 980.709 1030.475 105
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1080.679 880.604 1100.578 1040.380 1070.682 1040.291 1080.106 1180.483 910.258 1160.920 1010.258 1110.025 1150.231 1140.325 1060.480 1040.560 1070.463 1040.725 1020.666 1090.231 118
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
GrowSP++0.323 1170.114 1190.589 1120.499 1080.147 1190.555 1150.290 1090.336 1120.290 1160.262 1140.865 1130.102 1190.000 1190.037 1180.000 1200.000 1200.462 1160.381 1160.389 1180.664 1110.473 106
ScanNet+FTSDF0.383 1150.297 1170.491 1160.432 1150.358 1110.612 1130.274 1100.116 1170.411 1060.265 1130.904 1070.229 1130.079 1120.250 1100.185 1150.320 1150.510 1120.385 1140.548 1140.597 1170.394 110
PointNet++permissive0.339 1160.584 1030.478 1170.458 1130.256 1170.360 1190.250 1110.247 1160.278 1180.261 1150.677 1180.183 1160.117 1080.212 1160.145 1170.364 1120.346 1190.232 1190.548 1140.523 1180.252 117
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
3DMV, FTSDF0.501 1040.558 1060.608 1090.424 1160.478 970.690 1020.246 1120.586 960.468 940.450 910.911 1040.394 910.160 1010.438 960.212 1120.432 1080.541 1100.475 1020.742 1000.727 1000.477 104
SPLAT Netcopyleft0.393 1140.472 1140.511 1150.606 990.311 1150.656 1050.245 1130.405 1080.328 1140.197 1170.927 970.227 1140.000 1190.001 1200.249 1090.271 1170.510 1120.383 1150.593 1130.699 1050.267 116
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
PCNN0.498 1050.559 1050.644 1020.560 1050.420 1050.711 1010.229 1140.414 1070.436 1020.352 1060.941 790.324 1030.155 1020.238 1120.387 1040.493 1010.529 1110.509 930.813 930.751 950.504 99
SurfaceConvPF0.442 1100.505 1090.622 1060.380 1170.342 1120.654 1060.227 1150.397 1090.367 1090.276 1120.924 980.240 1120.198 860.359 1040.262 1080.366 1110.581 1030.435 1100.640 1090.668 1080.398 109
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
PanopticFusion-label0.529 1010.491 1110.688 920.604 1000.386 1060.632 1100.225 1160.705 780.434 1030.293 1100.815 1140.348 1000.241 680.499 880.669 760.507 1000.649 950.442 1090.796 940.602 1140.561 85
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
ScanNetpermissive0.306 1190.203 1180.366 1180.501 1070.311 1150.524 1170.211 1170.002 1200.342 1130.189 1180.786 1160.145 1180.102 1090.245 1110.152 1160.318 1160.348 1180.300 1180.460 1170.437 1190.182 119
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
SSC-UNetpermissive0.308 1180.353 1160.290 1190.278 1190.166 1180.553 1160.169 1180.286 1140.147 1190.148 1190.908 1050.182 1170.064 1130.023 1190.018 1190.354 1130.363 1170.345 1170.546 1160.685 1060.278 115
3DWSSS0.425 1130.525 1080.647 1000.522 1060.324 1130.488 1180.077 1190.712 760.353 1100.401 990.636 1190.281 1080.176 930.340 1050.565 880.175 1180.551 1080.398 1130.370 1190.602 1140.361 112
ERROR0.054 1200.000 1200.041 1200.172 1200.030 1200.062 1200.001 1200.035 1190.004 1200.051 1200.143 1200.019 1200.003 1180.041 1170.050 1180.003 1190.054 1200.018 1200.005 1200.264 1200.082 120